1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
// Copyright 2009 The XGB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The XGB package implements the X11 core protocol.
// It is based on XCB: http://xcb.freedesktop.org/
package xgb
import (
"errors"
"fmt"
"io"
"net"
"os"
"strings"
"sync"
)
const (
// cookieBuffer represents the queue size of cookies existing at any
// point in time. The size of the buffer is really only important when
// there are many requests without replies made in sequence. Once the
// buffer fills, a round trip request is made to clear the buffer.
cookieBuffer = 1000
readBuffer = 100
writeBuffer = 100
)
// A Conn represents a connection to an X server.
type Conn struct {
host string
conn net.Conn
err error
display string
defaultScreen int
Setup SetupInfo
extensions map[string]byte
eventChan chan eventOrError
cookieChan chan *cookie
xidChan chan xid
seqChan chan uint16
reqChan chan *request
extLock sync.Mutex
}
// NewConn creates a new connection instance. It initializes locks, data
// structures, and performs the initial handshake. (The code for the handshake
// has been relegated to conn.go.)
func NewConn() (*Conn, error) {
return NewConnDisplay("")
}
// NewConnDisplay is just like NewConn, but allows a specific DISPLAY
// string to be used.
// If 'display' is empty it will be taken from os.Getenv("DISPLAY").
//
// Examples:
// NewConn(":1") -> net.Dial("unix", "", "/tmp/.X11-unix/X1")
// NewConn("/tmp/launch-123/:0") -> net.Dial("unix", "", "/tmp/launch-123/:0")
// NewConn("hostname:2.1") -> net.Dial("tcp", "", "hostname:6002")
// NewConn("tcp/hostname:1.0") -> net.Dial("tcp", "", "hostname:6001")
func NewConnDisplay(display string) (*Conn, error) {
conn := &Conn{}
// First connect. This reads authority, checks DISPLAY environment
// variable, and loads the initial Setup info.
err := conn.connect(display)
if err != nil {
return nil, err
}
conn.extensions = make(map[string]byte)
conn.cookieChan = make(chan *cookie, cookieBuffer)
conn.xidChan = make(chan xid, 5)
conn.seqChan = make(chan uint16, 20)
conn.reqChan = make(chan *request, 100)
conn.eventChan = make(chan eventOrError, 100)
go conn.generateXIds()
go conn.generateSeqIds()
go conn.sendRequests()
go conn.readResponses()
return conn, nil
}
// Close closes the connection to the X server.
func (c *Conn) Close() {
c.conn.Close()
}
// DefaultScreen returns the Screen info for the default screen, which is
// 0 or the one given in the display argument to Dial.
func (c *Conn) DefaultScreen() *ScreenInfo {
return &c.Setup.Roots[c.defaultScreen]
}
// Id is used for all X identifiers, such as windows, pixmaps, and GCs.
type Id uint32
// Event is an interface that can contain any of the events returned by the
// server. Use a type assertion switch to extract the Event structs.
type Event interface {
ImplementsEvent()
Bytes() []byte
String() string
}
// newEventFuncs is a map from event numbers to functions that create
// the corresponding event.
var newEventFuncs = map[int]func(buf []byte) Event{}
// Error is an interface that can contain any of the errors returned by
// the server. Use a type assertion switch to extract the Error structs.
type Error interface {
ImplementsError()
SequenceId() uint16
BadId() Id
Error() string
}
// newErrorFuncs is a map from error numbers to functions that create
// the corresponding error.
var newErrorFuncs = map[int]func(buf []byte) Error{}
// eventOrError corresponds to values that can be either an event or an
// error.
type eventOrError interface{}
// NewID generates a new unused ID for use with requests like CreateWindow.
// If no new ids can be generated, the id returned is 0 and error is non-nil.
func (c *Conn) NewId() (Id, error) {
xid := <-c.xidChan
if xid.err != nil {
return 0, xid.err
}
return xid.id, nil
}
// xid encapsulates a resource identifier being sent over the Conn.xidChan
// channel. If no new resource id can be generated, id is set to 0 and a
// non-nil error is set in xid.err.
type xid struct {
id Id
err error
}
// generateXids sends new Ids down the channel for NewId to use.
// This needs to be updated to use the XC Misc extension once we run out of
// new ids.
// Thanks to libxcb/src/xcb_xid.c. This code is greatly inspired by it.
func (conn *Conn) generateXIds() {
// This requires some explanation. From the horse's mouth:
// "The resource-id-mask contains a single contiguous set of bits (at least
// 18). The client allocates resource IDs for types WINDOW, PIXMAP,
// CURSOR, FONT, GCONTEXT, and COLORMAP by choosing a value with only some
// subset of these bits set and ORing it with resource-id-base. Only values
// constructed in this way can be used to name newly created resources over
// this connection."
// So for example (using 8 bit integers), the mask might look like:
// 00111000
// So that valid values would be 00101000, 00110000, 00001000, and so on.
// Thus, the idea is to increment it by the place of the last least
// significant '1'. In this case, that value would be 00001000. To get
// that value, we can AND the original mask with its two's complement:
// 00111000 & 11001000 = 00001000.
// And we use that value to increment the last resource id to get a new one.
// (And then, of course, we OR it with resource-id-base.)
inc := conn.Setup.ResourceIdMask & -conn.Setup.ResourceIdMask
max := conn.Setup.ResourceIdMask
last := uint32(0)
for {
// TODO: Use the XC Misc extension to look for released ids.
if last > 0 && last >= max - inc + 1 {
conn.xidChan <- xid{
id: Id(0),
err: errors.New("There are no more available resource" +
"identifiers."),
}
}
last += inc
conn.xidChan <- xid{
id: Id(last | conn.Setup.ResourceIdBase),
err: nil,
}
}
}
// newSeqId fetches the next sequence id from the Conn.seqChan channel.
func (c *Conn) newSequenceId() uint16 {
return <-c.seqChan
}
// generateSeqIds returns new sequence ids.
// A sequence id is generated for *every* request. It's the identifier used
// to match up replies with requests.
// Since sequence ids can only be 16 bit integers we start over at zero when it
// comes time to wrap.
// N.B. As long as the cookie buffer is less than 2^16, there are no limitations
// on the number (or kind) of requests made in sequence.
func (c *Conn) generateSeqIds() {
seqid := uint16(1)
for {
c.seqChan <- seqid
if seqid == uint16((1 << 16) - 1) {
seqid = 0
} else {
seqid++
}
}
}
// request encapsulates a buffer of raw bytes (containing the request data)
// and a cookie, which when combined represents a single request.
// The cookie is used to match up the reply/error.
type request struct {
buf []byte
cookie *cookie
}
// newRequest takes the bytes an a cookie, constructs a request type,
// and sends it over the Conn.reqChan channel.
// Note that the sequence number is added to the cookie after it is sent
// over the request channel.
func (c *Conn) newRequest(buf []byte, cookie *cookie) {
c.reqChan <- &request{buf: buf, cookie: cookie}
}
// sendRequests is run as a single goroutine that takes requests and writes
// the bytes to the wire and adds the cookie to the cookie queue.
func (c *Conn) sendRequests() {
for req := range c.reqChan {
// ho there! if the cookie channel is nearly full, force a round
// trip to clear out the cookie buffer.
// Note that we circumvent the request channel, because we're *in*
// the request channel.
if len(c.cookieChan) == cookieBuffer - 1 {
cookie := c.newCookie(true, true)
cookie.Sequence = c.newSequenceId()
c.cookieChan <- cookie
if !c.writeBuffer(c.getInputFocusRequest()) {
return
}
GetInputFocusCookie{cookie}.Reply() // wait for the buffer to clear
}
req.cookie.Sequence = c.newSequenceId()
c.cookieChan <- req.cookie
if !c.writeBuffer(req.buf) {
return
}
}
}
// writeBuffer is a convenience function for writing a byte slice to the wire.
func (c *Conn) writeBuffer(buf []byte) bool {
if _, err := c.conn.Write(buf); err != nil {
fmt.Fprintf(os.Stderr, "x protocol write error: %s\n", err)
close(c.reqChan)
return false
}
return true
}
// readResponses is a goroutine that reads events, errors and
// replies off the wire.
// When an event is read, it is always added to the event channel.
// When an error is read, if it corresponds to an existing checked cookie,
// it is sent to that cookie's error channel. Otherwise it is added to the
// event channel.
// When a reply is read, it is added to the corresponding cookie's reply
// channel. (It is an error if no such cookie exists in this case.)
// Finally, cookies that came "before" this reply are always cleaned up.
func (c *Conn) readResponses() {
var (
err Error
event Event
seq uint16
replyBytes []byte
)
buf := make([]byte, 32)
for {
err, event, seq = nil, nil, 0
if _, err := io.ReadFull(c.conn, buf); err != nil {
fmt.Fprintf(os.Stderr, "x protocol read error: %s\n", err)
close(c.eventChan)
break
}
switch buf[0] {
case 0: // This is an error
// Use the constructor function for this error (that is auto
// generated) by looking it up by the error number.
newErrFun, ok := newErrorFuncs[int(buf[1])]
if !ok {
fmt.Fprintf(os.Stderr,
"BUG: " +
"Could not find error constructor function for error " +
"with number %d.", buf[1])
continue
}
err = newErrFun(buf)
seq = err.SequenceId()
// This error is either sent to the event channel or a specific
// cookie's error channel below.
case 1: // This is a reply
seq = Get16(buf[2:])
// check to see if this reply has more bytes to be read
size := Get32(buf[4:])
if size > 0 {
byteCount := 32 + size * 4
biggerBuf := make([]byte, byteCount)
copy(biggerBuf[:32], buf)
if _, err := io.ReadFull(c.conn, biggerBuf[32:]); err != nil {
fmt.Fprintf(os.Stderr, "x protocol read error: %s\n", err)
close(c.eventChan)
break
}
replyBytes = biggerBuf
} else {
replyBytes = buf
}
// This reply is sent to its corresponding cookie below.
default: // This is an event
// Use the constructor function for this event (like for errors,
// and is also auto generated) by looking it up by the event number.
// Note that we AND the event number with 127 so that we ignore
// the most significant bit (which is set when it was sent from
// a SendEvent request).
evNum := int(buf[0] & 127)
newEventFun, ok := newEventFuncs[evNum]
if !ok {
fmt.Fprintf(os.Stderr,
"BUG: " +
"Could not find event constructor function for event " +
"with number %d.", evNum)
continue
}
event = newEventFun(buf)
// Put the event into the queue.
c.eventChan <- event
// No more processing for events.
continue
}
// At this point, we have a sequence number and we're either
// processing an error or a reply, which are both responses to
// requests. So all we have to do is find the cookie corresponding
// to this error/reply, and send the appropriate data to it.
// In doing so, we make sure that any cookies that came before it
// are marked as successful if they are void and checked.
// If there's a cookie that requires a reply that is before this
// reply, then something is wrong.
for cookie := range c.cookieChan {
// This is the cookie we're looking for. Process and break.
if cookie.Sequence == seq {
if err != nil { // this is an error to a request
// synchronous processing
if cookie.errorChan != nil {
cookie.errorChan <- err
} else { // asynchronous processing
c.eventChan <- err
// if this is an unchecked reply, ping the cookie too
if cookie.pingChan != nil {
cookie.pingChan <- true
}
}
} else { // this is a reply
if cookie.replyChan == nil {
fmt.Fprintf(os.Stderr,
"Reply with sequence id %d does not have a " +
"cookie with a valid reply channel.\n", seq)
continue
} else {
cookie.replyChan <- replyBytes
}
}
break
}
switch {
// Checked requests with replies
case cookie.replyChan != nil && cookie.errorChan != nil:
fmt.Fprintf(os.Stderr,
"Found cookie with sequence id %d that is expecting a " +
"reply but will never get it. Currently on sequence " +
"number %d\n", cookie.Sequence, seq)
// Unchecked requests with replies
case cookie.replyChan != nil && cookie.pingChan != nil:
fmt.Fprintf(os.Stderr,
"Found cookie with sequence id %d that is expecting a " +
"reply (and not an error) but will never get it. " +
"Currently on sequence number %d\n", cookie.Sequence, seq)
// Checked requests without replies
case cookie.pingChan != nil && cookie.errorChan != nil:
cookie.pingChan <- true
// Unchecked requests without replies don't have any channels,
// so we can't do anything with them except let them pass by.
}
}
}
}
// processEventOrError takes an eventOrError, type switches on it,
// and returns it in Go idiomatic style.
func processEventOrError(everr eventOrError) (Event, Error) {
switch ee := everr.(type) {
case Event:
return ee, nil
case Error:
return nil, ee
default:
fmt.Fprintf(os.Stderr, "Invalid event/error type: %T\n", everr)
return nil, nil
}
panic("unreachable")
}
// WaitForEvent returns the next event from the server.
// It will block until an event is available.
func (c *Conn) WaitForEvent() (Event, Error) {
return processEventOrError(<-c.eventChan)
}
// PollForEvent returns the next event from the server if one is available in
// the internal queue.
// It will not block.
func (c *Conn) PollForEvent() (Event, Error) {
select {
case everr := <-c.eventChan:
return processEventOrError(everr)
default:
return nil, nil
}
panic("unreachable")
}
// RegisterExtension adds the respective extension's major op code to
// the extensions map.
func (c *Conn) RegisterExtension(name string) error {
nameUpper := strings.ToUpper(name)
reply, err := c.QueryExtension(uint16(len(nameUpper)), nameUpper).Reply()
switch {
case err != nil:
return err
case !reply.Present:
return errors.New(fmt.Sprintf("No extension named '%s' is present.",
nameUpper))
}
c.extLock.Lock()
c.extensions[nameUpper] = reply.MajorOpcode
c.extLock.Unlock()
return nil
}
|