diff options
author | Přemysl Eric Janouch <p@janouch.name> | 2024-01-07 23:26:05 +0100 |
---|---|---|
committer | Přemysl Eric Janouch <p@janouch.name> | 2024-01-18 18:31:09 +0100 |
commit | b4f28814b7f5cf1d2375963db81f554d470aef83 (patch) | |
tree | 6598b3076c270ba5f91a20fc2a47d4ed4e0408be /deeptagger/download.sh | |
parent | 054078908a1e4c7429ea0f5a3a0605addfccc46c (diff) | |
download | gallery-b4f28814b7f5cf1d2375963db81f554d470aef83.tar.gz gallery-b4f28814b7f5cf1d2375963db81f554d470aef83.tar.xz gallery-b4f28814b7f5cf1d2375963db81f554d470aef83.zip |
Add a deep tagger in C++
Diffstat (limited to 'deeptagger/download.sh')
-rwxr-xr-x | deeptagger/download.sh | 161 |
1 files changed, 161 insertions, 0 deletions
diff --git a/deeptagger/download.sh b/deeptagger/download.sh new file mode 100755 index 0000000..29f651e --- /dev/null +++ b/deeptagger/download.sh @@ -0,0 +1,161 @@ +#!/bin/sh -e +# Requirements: Python ~ 3.11, curl, unzip, git-lfs, awk +# +# This script downloads a bunch of models into the models/ directory, +# after any necessary transformations to run them using the deeptagger binary. +# +# Once it succeeds, feel free to remove everything but *.{model,tags,onnx} +git lfs install +mkdir -p models +cd models + +# Create a virtual environment for model conversion. +# +# If any of the Python stuff fails, +# retry from within a Conda environment with a different version of Python. +export VIRTUAL_ENV=$(pwd)/venv +export TF_ENABLE_ONEDNN_OPTS=0 +if ! [ -f "$VIRTUAL_ENV/ready" ] +then + python3 -m venv "$VIRTUAL_ENV" + #"$VIRTUAL_ENV/bin/pip3" install tensorflow[and-cuda] + "$VIRTUAL_ENV/bin/pip3" install tf2onnx 'deepdanbooru[tensorflow]' + touch "$VIRTUAL_ENV/ready" +fi + +status() { + echo "$(tput bold)-- $*$(tput sgr0)" +} + +# Using the deepdanbooru package makes it possible to use other models +# trained with the project. +deepdanbooru() { + local name=$1 url=$2 + status "$name" + + local basename=$(basename "$url") + if ! [ -e "$basename" ] + then curl -LO "$url" + fi + + local modelname=${basename%%.*} + if ! [ -d "$modelname" ] + then unzip -d "$modelname" "$basename" + fi + + if ! [ -e "$modelname.tags" ] + then ln "$modelname/tags.txt" "$modelname.tags" + fi + + if ! [ -d "$modelname.saved" ] + then "$VIRTUAL_ENV/bin/python3" - "$modelname" "$modelname.saved" <<-'END' + import sys + import deepdanbooru.project as ddp + model = ddp.load_model_from_project( + project_path=sys.argv[1], compile_model=False) + model.export(sys.argv[2]) + END + fi + + if ! [ -e "$modelname.onnx" ] + then "$VIRTUAL_ENV/bin/python3" -m tf2onnx.convert \ + --saved-model "$modelname.saved" --output "$modelname.onnx" + fi + + cat > "$modelname.model" <<-END + name=$name + shape=nhwc + channels=rgb + normalize=true + pad=edge + END +} + +# ONNX preconversions don't have a symbolic first dimension, thus doing our own. +wd14() { + local name=$1 repository=$2 + status "$name" + + local modelname=$(basename "$repository") + if ! [ -d "$modelname" ] + then git clone "https://huggingface.co/$repository" + fi + + # Though link the original export as well. + if ! [ -e "$modelname.onnx" ] + then ln "$modelname/model.onnx" "$modelname.onnx" + fi + + if ! [ -e "$modelname.tags" ] + then awk -F, 'NR > 1 { print $2 }' "$modelname/selected_tags.csv" \ + > "$modelname.tags" + fi + + cat > "$modelname.model" <<-END + name=$name + shape=nhwc + channels=bgr + normalize=false + pad=white + END + + if ! [ -e "batch-$modelname.onnx" ] + then "$VIRTUAL_ENV/bin/python3" -m tf2onnx.convert \ + --saved-model "$modelname" --output "batch-$modelname.onnx" + fi + + if ! [ -e "batch-$modelname.tags" ] + then ln "$modelname.tags" "batch-$modelname.tags" + fi + + if ! [ -e "batch-$modelname.model" ] + then ln "$modelname.model" "batch-$modelname.model" + fi +} + +# These models are an undocumented mess, thus using ONNX preconversions. +mldanbooru() { + local name=$1 basename=$2 + status "$name" + + if ! [ -d ml-danbooru-onnx ] + then git clone https://huggingface.co/deepghs/ml-danbooru-onnx + fi + + local modelname=${basename%%.*} + if ! [ -e "$basename" ] + then ln "ml-danbooru-onnx/$basename" + fi + + if ! [ -e "$modelname.tags" ] + then awk -F, 'NR > 1 { print $1 }' ml-danbooru-onnx/tags.csv \ + > "$modelname.tags" + fi + + cat > "$modelname.model" <<-END + name=$name + shape=nchw + channels=rgb + normalize=true + pad=stretch + size=640 + interpret=sigmoid + END +} + +status "Downloading models, beware that git-lfs doesn't indicate progress" + +deepdanbooru DeepDanbooru \ + 'https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip' + +#wd14 'WD v1.4 ViT v1' 'SmilingWolf/wd-v1-4-vit-tagger' +wd14 'WD v1.4 ViT v2' 'SmilingWolf/wd-v1-4-vit-tagger-v2' +#wd14 'WD v1.4 ConvNeXT v1' 'SmilingWolf/wd-v1-4-convnext-tagger' +wd14 'WD v1.4 ConvNeXT v2' 'SmilingWolf/wd-v1-4-convnext-tagger-v2' +wd14 'WD v1.4 ConvNeXTV2 v2' 'SmilingWolf/wd-v1-4-convnextv2-tagger-v2' +wd14 'WD v1.4 SwinV2 v2' 'SmilingWolf/wd-v1-4-swinv2-tagger-v2' +wd14 'WD v1.4 MOAT v2' 'SmilingWolf/wd-v1-4-moat-tagger-v2' + +# As suggested by author https://github.com/IrisRainbowNeko/ML-Danbooru-webui +mldanbooru 'ML-Danbooru Caformer dec-5-97527' 'ml_caformer_m36_dec-5-97527.onnx' +mldanbooru 'ML-Danbooru TResNet-D 6-30000' 'TResnet-D-FLq_ema_6-30000.onnx' |