aboutsummaryrefslogtreecommitdiff
path: root/deeptagger/README.adoc
diff options
context:
space:
mode:
authorPřemysl Eric Janouch <p@janouch.name>2024-01-21 12:35:48 +0100
committerPřemysl Eric Janouch <p@janouch.name>2024-01-21 12:43:27 +0100
commitaa65466a49edb68993618769d926a793aea5ad76 (patch)
treec88d089e0b31087b282d9b10b282935a48fe56ee /deeptagger/README.adoc
parent454cfd688c29d998ada967d0c780843ffe99cf1b (diff)
downloadgallery-aa65466a49edb68993618769d926a793aea5ad76.tar.gz
gallery-aa65466a49edb68993618769d926a793aea5ad76.tar.xz
gallery-aa65466a49edb68993618769d926a793aea5ad76.zip
deeptagger: add an example of how to use it
And refer to CAFormer correctly.
Diffstat (limited to 'deeptagger/README.adoc')
-rw-r--r--deeptagger/README.adoc37
1 files changed, 24 insertions, 13 deletions
diff --git a/deeptagger/README.adoc b/deeptagger/README.adoc
index 2973db9..3eb62cd 100644
--- a/deeptagger/README.adoc
+++ b/deeptagger/README.adoc
@@ -47,7 +47,18 @@ Options
--pipe::
Take input filenames from the standard input.
--threshold 0.1::
- Output weight threshold. Needs to be set very high on ML-Danbooru models.
+ Output weight threshold. Needs to be set higher on ML-Danbooru models.
+
+Tagging galleries
+-----------------
+The appropriate invocation depends on your machine, and the chosen model.
+Unless you have a powerful machine, or use a fast model, it may take forever.
+
+ $ find "$GALLERY/images" -type f \
+ | build/deeptagger --pipe -b 16 -t 0.5 \
+ models/ml_caformer_m36_dec-5-97527.model \
+ | sed 's|[^\t]*/||' \
+ | gallery tag "$GALLERY" caformer "ML-Danbooru CAFormer"
Model benchmarks (Linux)
------------------------
@@ -65,14 +76,14 @@ GPU inference
|WD v1.4 ViT v2 (batch)|16|19 s
|DeepDanbooru|16|21 s
|WD v1.4 SwinV2 v2 (batch)|16|21 s
-|ML-Danbooru Caformer dec-5-97527|16|25 s
+|ML-Danbooru CAFormer dec-5-97527|16|25 s
|WD v1.4 ViT v2 (batch)|4|27 s
|WD v1.4 SwinV2 v2 (batch)|4|30 s
|DeepDanbooru|4|31 s
|ML-Danbooru TResNet-D 6-30000|16|31 s
|WD v1.4 MOAT v2 (batch)|16|31 s
|WD v1.4 ConvNeXT v2 (batch)|16|32 s
-|ML-Danbooru Caformer dec-5-97527|4|32 s
+|ML-Danbooru CAFormer dec-5-97527|4|32 s
|WD v1.4 ConvNeXTV2 v2 (batch)|16|36 s
|ML-Danbooru TResNet-D 6-30000|4|39 s
|WD v1.4 ConvNeXT v2 (batch)|4|39 s
@@ -80,7 +91,7 @@ GPU inference
|WD v1.4 ConvNeXTV2 v2 (batch)|4|43 s
|WD v1.4 ViT v2|1|43 s
|WD v1.4 ViT v2 (batch)|1|43 s
-|ML-Danbooru Caformer dec-5-97527|1|52 s
+|ML-Danbooru CAFormer dec-5-97527|1|52 s
|DeepDanbooru|1|53 s
|WD v1.4 MOAT v2|1|53 s
|WD v1.4 ConvNeXT v2|1|54 s
@@ -110,7 +121,7 @@ CPU inference
|WD v1.4 ConvNeXTV2 v2|1|245 s
|WD v1.4 ConvNeXTV2 v2 (batch)|4|268 s
|WD v1.4 ViT v2 (batch)|16|270 s
-|ML-Danbooru Caformer dec-5-97527|4|270 s
+|ML-Danbooru CAFormer dec-5-97527|4|270 s
|WD v1.4 ConvNeXT v2 (batch)|1|272 s
|WD v1.4 SwinV2 v2 (batch)|4|277 s
|WD v1.4 ViT v2 (batch)|4|277 s
@@ -118,7 +129,7 @@ CPU inference
|WD v1.4 SwinV2 v2 (batch)|1|300 s
|WD v1.4 SwinV2 v2|1|302 s
|WD v1.4 SwinV2 v2 (batch)|16|305 s
-|ML-Danbooru Caformer dec-5-97527|16|305 s
+|ML-Danbooru CAFormer dec-5-97527|16|305 s
|WD v1.4 MOAT v2 (batch)|4|307 s
|WD v1.4 ViT v2|1|308 s
|WD v1.4 ViT v2 (batch)|1|311 s
@@ -126,7 +137,7 @@ CPU inference
|WD v1.4 MOAT v2|1|332 s
|WD v1.4 MOAT v2 (batch)|16|335 s
|WD v1.4 MOAT v2 (batch)|1|339 s
-|ML-Danbooru Caformer dec-5-97527|1|352 s
+|ML-Danbooru CAFormer dec-5-97527|1|352 s
|===
Model benchmarks (macOS)
@@ -166,12 +177,12 @@ GPU inference
|WD v1.4 ConvNeXTV2 v2 (batch)|1|160 s
|WD v1.4 MOAT v2 (batch)|1|165 s
|WD v1.4 SwinV2 v2|1|166 s
-|ML-Danbooru Caformer dec-5-97527|1|263 s
+|ML-Danbooru CAFormer dec-5-97527|1|263 s
|WD v1.4 ConvNeXT v2|1|273 s
|WD v1.4 MOAT v2|1|273 s
|WD v1.4 ConvNeXTV2 v2|1|340 s
-|ML-Danbooru Caformer dec-5-97527|4|445 s
-|ML-Danbooru Caformer dec-5-97527|8|1790 s
+|ML-Danbooru CAFormer dec-5-97527|4|445 s
+|ML-Danbooru CAFormer dec-5-97527|8|1790 s
|WD v1.4 MOAT v2 (batch)|4|kernel panic
|===
@@ -189,14 +200,14 @@ CPU inference
|WD v1.4 SwinV2 v2 (batch)|1|98 s
|ML-Danbooru TResNet-D 6-30000|4|99 s
|WD v1.4 SwinV2 v2|1|99 s
-|ML-Danbooru Caformer dec-5-97527|4|110 s
-|ML-Danbooru Caformer dec-5-97527|8|110 s
+|ML-Danbooru CAFormer dec-5-97527|4|110 s
+|ML-Danbooru CAFormer dec-5-97527|8|110 s
|WD v1.4 ViT v2 (batch)|4|111 s
|WD v1.4 ViT v2 (batch)|8|111 s
|WD v1.4 ViT v2 (batch)|1|113 s
|WD v1.4 ViT v2|1|113 s
|ML-Danbooru TResNet-D 6-30000|1|118 s
-|ML-Danbooru Caformer dec-5-97527|1|122 s
+|ML-Danbooru CAFormer dec-5-97527|1|122 s
|WD v1.4 ConvNeXT v2 (batch)|8|124 s
|WD v1.4 ConvNeXT v2 (batch)|4|125 s
|WD v1.4 ConvNeXTV2 v2 (batch)|8|129 s