/*
* zyklonb.c: the experimental IRC bot
*
* Copyright (c) 2014, Přemysl Janouch
* All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#define _POSIX_C_SOURCE 199309L
#define _XOPEN_SOURCE 500
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef NI_MAXHOST
#define NI_MAXHOST 1025
#endif // ! NI_MAXHOST
#include
#include
#include
#include "siphash.h"
#define PROGRAM_NAME "ZyklonB"
#define PROGRAM_VERSION "alpha"
extern char **environ;
#if defined __GNUC__
#define ATTRIBUTE_PRINTF(x, y) __attribute__ ((format (printf, x, y)))
#else // ! __GNUC__
#define ATTRIBUTE_PRINTF(x, y)
#endif // ! __GNUC__
#if defined __GNUC__ && __GNUC__ >= 4
#define ATTRIBUTE_SENTINEL __attribute__ ((sentinel))
#else // ! __GNUC__ || __GNUC__ < 4
#define ATTRIBUTE_SENTINEL
#endif // ! __GNUC__ || __GNUC__ < 4
#define N_ELEMENTS(a) (sizeof (a) / sizeof ((a)[0]))
#define BLOCK_START do {
#define BLOCK_END } while (0)
// --- Utilities ---------------------------------------------------------------
static void
print_message (FILE *stream, const char *type, const char *fmt, ...)
ATTRIBUTE_PRINTF (3, 4);
static void
print_message (FILE *stream, const char *type, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
fprintf (stream, "%s ", type);
vfprintf (stream, fmt, ap);
fputs ("\n", stream);
va_end (ap);
}
#define print_fatal(...) print_message (stderr, "fatal:", __VA_ARGS__)
#define print_error(...) print_message (stderr, "error:", __VA_ARGS__)
#define print_warning(...) print_message (stderr, "warning:", __VA_ARGS__)
#define print_status(...) print_message (stdout, "--", __VA_ARGS__)
// --- Debugging and assertions ------------------------------------------------
// We should check everything that may possibly fail with at least a soft
// assertion, so that any causes for problems don't slip us by silently.
//
// `g_soft_asserts_are_deadly' may be useful while running inside a debugger.
static bool g_debug_mode; ///< Debug messages are printed
static bool g_soft_asserts_are_deadly; ///< soft_assert() aborts as well
#define print_debug(...) \
BLOCK_START \
if (g_debug_mode) \
print_message (stderr, "debug:", __VA_ARGS__); \
BLOCK_END
static void
assertion_failure_handler (bool is_fatal, const char *file, int line,
const char *function, const char *condition)
{
if (is_fatal)
{
print_fatal ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
abort ();
}
else
print_debug ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
}
#define soft_assert(condition) \
((condition) ? true : \
(assertion_failure_handler (g_soft_asserts_are_deadly, \
__FILE__, __LINE__, __func__, #condition), false))
#define hard_assert(condition) \
((condition) ? (void) 0 : \
assertion_failure_handler (true, \
__FILE__, __LINE__, __func__, #condition))
// --- Safe memory management --------------------------------------------------
// When a memory allocation fails and we need the memory, we're usually pretty
// much fucked. Use the non-prefixed versions when there's a legitimate
// worry that an unrealistic amount of memory may be requested for allocation.
// XXX: it's not a good idea to use print_message() as it may want to allocate
// further memory for printf() and the output streams. That may fail.
static void *
xmalloc (size_t n)
{
void *p = malloc (n);
if (!p)
{
print_fatal ("malloc: %s", strerror (errno));
exit (EXIT_FAILURE);
}
return p;
}
static void *
xcalloc (size_t n, size_t m)
{
void *p = calloc (n, m);
if (!p && n && m)
{
print_fatal ("calloc: %s", strerror (errno));
exit (EXIT_FAILURE);
}
return p;
}
static void *
xrealloc (void *o, size_t n)
{
void *p = realloc (o, n);
if (!p && n)
{
print_fatal ("realloc: %s", strerror (errno));
exit (EXIT_FAILURE);
}
return p;
}
static void *
xreallocarray (void *o, size_t n, size_t m)
{
if (m && n > SIZE_MAX / m)
{
errno = ENOMEM;
print_fatal ("reallocarray: %s", strerror (errno));
exit (EXIT_FAILURE);
}
return xrealloc (o, n * m);
}
static char *
xstrdup (const char *s)
{
return strcpy (xmalloc (strlen (s) + 1), s);
}
static char *
xstrndup (const char *s, size_t n)
{
size_t size = strlen (s);
if (n > size)
n = size;
char *copy = xmalloc (n + 1);
memcpy (copy, s, n);
copy[n] = '\0';
return copy;
}
// --- Double-linked list helpers ----------------------------------------------
// The links of the list need to have the members `prev' and `next'.
#define LIST_PREPEND(head, link) \
BLOCK_START \
(link)->prev = NULL; \
(link)->next = (head); \
if ((link)->next) \
(link)->next->prev = (link); \
(head) = (link); \
BLOCK_END
#define LIST_UNLINK(head, link) \
BLOCK_START \
if ((link)->prev) \
(link)->prev->next = (link)->next; \
else \
(head) = (link)->next; \
if ((link)->next) \
(link)->next->prev = (link)->prev; \
BLOCK_END
// --- Dynamically allocated string array --------------------------------------
struct str_vector
{
char **vector;
size_t len;
size_t alloc;
};
static void
str_vector_init (struct str_vector *self)
{
self->alloc = 4;
self->len = 0;
self->vector = xcalloc (sizeof *self->vector, self->alloc);
}
static void
str_vector_free (struct str_vector *self)
{
unsigned i;
for (i = 0; i < self->len; i++)
free (self->vector[i]);
free (self->vector);
self->vector = NULL;
}
static void
str_vector_add_owned (struct str_vector *self, char *s)
{
self->vector[self->len] = s;
if (++self->len >= self->alloc)
self->vector = xreallocarray (self->vector,
sizeof *self->vector, (self->alloc <<= 1));
self->vector[self->len] = NULL;
}
static void
str_vector_add (struct str_vector *self, const char *s)
{
str_vector_add_owned (self, xstrdup (s));
}
static void
str_vector_add_args (struct str_vector *self, const char *s, ...)
ATTRIBUTE_SENTINEL;
static void
str_vector_add_args (struct str_vector *self, const char *s, ...)
{
va_list ap;
va_start (ap, s);
while (s)
{
str_vector_add (self, s);
s = va_arg (ap, const char *);
}
va_end (ap);
}
static void
str_vector_add_vector (struct str_vector *self, char **vector)
{
while (*vector)
str_vector_add (self, *vector++);
}
static void
str_vector_remove (struct str_vector *self, size_t i)
{
hard_assert (i < self->len);
free (self->vector[i]);
memmove (self->vector + i, self->vector + i + 1,
(self->len-- - i) * sizeof *self->vector);
}
// --- Dynamically allocated strings -------------------------------------------
// Basically a string builder to abstract away manual memory management.
struct str
{
char *str; ///< String data, null terminated
size_t alloc; ///< How many bytes are allocated
size_t len; ///< How long the string actually is
};
/// We don't care about allocations that are way too large for the content, as
/// long as the allocation is below the given threshold. (Trivial heuristics.)
#define STR_SHRINK_THRESHOLD (1 << 20)
static void
str_init (struct str *self)
{
self->alloc = 16;
self->len = 0;
self->str = strcpy (xmalloc (self->alloc), "");
}
static void
str_free (struct str *self)
{
free (self->str);
self->str = NULL;
self->alloc = 0;
self->len = 0;
}
static void
str_reset (struct str *self)
{
str_free (self);
str_init (self);
}
static char *
str_steal (struct str *self)
{
char *str = self->str;
self->str = NULL;
str_free (self);
return str;
}
static void
str_ensure_space (struct str *self, size_t n)
{
// We allocate at least one more byte for the terminating null character
size_t new_alloc = self->alloc;
while (new_alloc <= self->len + n)
new_alloc <<= 1;
if (new_alloc != self->alloc)
self->str = xrealloc (self->str, (self->alloc = new_alloc));
}
static void
str_append_data (struct str *self, const char *data, size_t n)
{
str_ensure_space (self, n);
memcpy (self->str + self->len, data, n);
self->len += n;
self->str[self->len] = '\0';
}
static void
str_append_c (struct str *self, char c)
{
str_append_data (self, &c, 1);
}
static void
str_append (struct str *self, const char *s)
{
str_append_data (self, s, strlen (s));
}
static void
str_append_str (struct str *self, const struct str *another)
{
str_append_data (self, another->str, another->len);
}
static int
str_append_vprintf (struct str *self, const char *fmt, va_list va)
{
va_list ap;
int size;
va_copy (ap, va);
size = vsnprintf (NULL, 0, fmt, ap);
va_end (ap);
if (size < 0)
return -1;
va_copy (ap, va);
str_ensure_space (self, size);
size = vsnprintf (self->str + self->len, self->alloc - self->len, fmt, ap);
va_end (ap);
if (size > 0)
self->len += size;
return size;
}
static int
str_append_printf (struct str *self, const char *fmt, ...)
ATTRIBUTE_PRINTF (2, 3);
static int
str_append_printf (struct str *self, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
int size = str_append_vprintf (self, fmt, ap);
va_end (ap);
return size;
}
static void
str_remove_slice (struct str *self, size_t start, size_t length)
{
size_t end = start + length;
hard_assert (end <= self->len);
memmove (self->str + start, self->str + end, self->len - end);
self->str[self->len -= length] = '\0';
// Shrink the string if the allocation becomes way too large
if (self->alloc >= STR_SHRINK_THRESHOLD && self->len < (self->alloc >> 2))
self->str = xrealloc (self->str, self->alloc >>= 2);
}
// --- Errors ------------------------------------------------------------------
// Error reporting utilities. Inspired by GError, only much simpler.
struct error
{
size_t domain; ///< The domain of the error
int id; ///< The concrete error ID
char *message; ///< Textual description of the event
};
static size_t
error_resolve_domain (size_t *tag)
{
// This method is fairly sensitive to the order in which resolution
// requests come in, does not provide a good way of decoding the number
// back to a meaningful identifier, and may not play all too well with
// dynamic libraries when a module is e.g. statically linked into multiple
// libraries, but it's fast, simple, and more than enough for our purposes.
static size_t domain_counter;
if (!*tag)
*tag = ++domain_counter;
return *tag;
}
static void
error_set (struct error **e, size_t domain, int id,
const char *message, ...) ATTRIBUTE_PRINTF (4, 5);
static void
error_set (struct error **e, size_t domain, int id,
const char *message, ...)
{
if (!e)
return;
va_list ap;
va_start (ap, message);
int size = snprintf (NULL, 0, message, ap);
va_end (ap);
hard_assert (size >= 0);
struct error *tmp = xmalloc (sizeof *tmp);
tmp->domain = domain;
tmp->id = id;
tmp->message = xmalloc (size + 1);
va_start (ap, message);
size = snprintf (tmp->message, size + 1, message, ap);
va_end (ap);
hard_assert (size >= 0);
soft_assert (*e == NULL);
*e = tmp;
}
static void
error_free (struct error *e)
{
free (e->message);
free (e);
}
static void
error_propagate (struct error **destination, struct error *source)
{
if (!destination)
{
error_free (source);
return;
}
soft_assert (*destination == NULL);
*destination = source;
}
// --- String hash map ---------------------------------------------------------
// The most basic map (or associative array).
struct str_map_link
{
struct str_map_link *next; ///< The next link in a chain
struct str_map_link *prev; ///< The previous link in a chain
void *data; ///< Payload
size_t key_length; ///< Length of the key without '\0'
char key[]; ///< The key for this link
};
struct str_map
{
struct str_map_link **map; ///< The hash table data itself
size_t alloc; ///< Number of allocated entries
size_t len; ///< Number of entries in the table
void (*free) (void *); ///< Callback to destruct the payload
};
#define STR_MAP_MIN_ALLOC 16
typedef void (*str_map_free_func) (void *);
static void
str_map_init (struct str_map *self)
{
self->alloc = STR_MAP_MIN_ALLOC;
self->len = 0;
self->free = NULL;
self->map = xcalloc (self->alloc, sizeof *self->map);
}
static void
str_map_free (struct str_map *self)
{
struct str_map_link **iter, **end = self->map + self->alloc;
struct str_map_link *link, *tmp;
for (iter = self->map; iter < end; iter++)
for (link = *iter; link; link = tmp)
{
tmp = link->next;
if (self->free)
self->free (link->data);
free (link);
}
free (self->map);
self->map = NULL;
}
static uint64_t
str_map_hash (const char *s, size_t len)
{
static unsigned char key[16] = "SipHash 2-4 key!";
return siphash (key, (const void *) s, len);
}
static uint64_t
str_map_pos (struct str_map *self, const char *s)
{
size_t mask = self->alloc - 1;
return str_map_hash (s, strlen (s)) & mask;
}
static uint64_t
str_map_link_hash (struct str_map_link *self)
{
return str_map_hash (self->key, self->key_length);
}
static void
str_map_resize (struct str_map *self, size_t new_size)
{
struct str_map_link **old_map = self->map;
size_t i, old_size = self->alloc;
// Only powers of two, so that we don't need to compute the modulo
hard_assert ((new_size & (new_size - 1)) == 0);
size_t mask = new_size - 1;
self->alloc = new_size;
self->map = xcalloc (self->alloc, sizeof *self->map);
for (i = 0; i < old_size; i++)
{
struct str_map_link *iter = old_map[i], *next_iter;
while (iter)
{
next_iter = iter->next;
uint64_t pos = str_map_link_hash (iter) & mask;
LIST_PREPEND (self->map[pos], iter);
iter = next_iter;
}
}
free (old_map);
}
static void
str_map_set (struct str_map *self, const char *key, void *value)
{
uint64_t pos = str_map_pos (self, key);
struct str_map_link *iter = self->map[pos];
for (; iter; iter = iter->next)
{
if (strcmp (key, iter->key))
continue;
// Storing the same data doesn't destroy it
if (self->free && value != iter->data)
self->free (iter->data);
if (value)
{
iter->data = value;
return;
}
LIST_UNLINK (self->map[pos], iter);
free (iter);
self->len--;
// The array should be at least 1/4 full
if (self->alloc >= (STR_MAP_MIN_ALLOC << 2)
&& self->len < (self->alloc >> 2))
str_map_resize (self, self->alloc >> 2);
return;
}
if (!value)
return;
if (self->len >= self->alloc)
{
str_map_resize (self, self->alloc << 1);
pos = str_map_pos (self, key);
}
// Link in a new element for the given pair
size_t key_length = strlen (key);
struct str_map_link *link = xmalloc (sizeof *link + key_length + 1);
link->data = value;
link->key_length = key_length;
memcpy (link->key, key, key_length + 1);
LIST_PREPEND (self->map[pos], link);
self->len++;
}
static void *
str_map_find (struct str_map *self, const char *key)
{
struct str_map_link *iter = self->map[str_map_pos (self, key)];
for (; iter; iter = iter->next)
if (!strcmp (key, (char *) iter + sizeof *iter))
return iter->data;
return NULL;
}
// --- File descriptor utilities -----------------------------------------------
static void
set_cloexec (int fd)
{
soft_assert (fcntl (fd, F_SETFD, fcntl (fd, F_GETFD) | FD_CLOEXEC) != -1);
}
static bool
set_blocking (int fd, bool blocking)
{
int flags = fcntl (fd, F_GETFL);
hard_assert (flags != -1);
bool prev = !(flags & O_NONBLOCK);
if (blocking)
flags &= ~O_NONBLOCK;
else
flags |= O_NONBLOCK;
hard_assert (fcntl (fd, F_SETFL, flags) != -1);
return prev;
}
static void
xclose (int fd)
{
while (close (fd) == -1)
if (!soft_assert (errno == EINTR))
break;
}
// --- Polling -----------------------------------------------------------------
// Basically the poor man's GMainLoop/libev/libuv. It might make some sense
// to instead use those tested and proven libraries but we don't need much
// and it's interesting to implement.
// At the moment the FD's are stored in an unsorted array. This is not ideal
// complexity-wise but I don't think I have much of a choice with poll(),
// and neither with epoll for that matter.
//
// unsorted array sorted array
// search O(n) O(log n) [O(log log n)]
// insert by fd O(n) O(n)
// delete by fd O(n) O(n)
//
// Insertion in the unsorted array can be reduced to O(1) if I maintain a
// bitmap of present FD's but that's still not a huge win.
//
// I don't expect this to be much of an issue, as there are typically not going
// to be that many FD's to watch, and the linear approach is cache-friendly.
typedef void (*poller_dispatcher_func) (const struct pollfd *, void *);
#define POLLER_MIN_ALLOC 16
#ifdef __linux__
// I don't really need this, I've basically implemented this just because I can.
#include
struct poller_info
{
int fd; ///< Our file descriptor
uint32_t events; ///< The events we registered
poller_dispatcher_func dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller
{
int epoll_fd; ///< The epoll FD
struct poller_info **info; ///< Information associated with each FD
struct epoll_event *revents; ///< Output array for epoll_wait()
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
/// Index of the element in `revents' that's currently being dispatched,
/// or -1 if we're not dispatching at the moment.
int dispatch_iterator;
/// The total number of entries stored in `revents' by epoll_wait().
int dispatch_total;
};
static void
poller_init (struct poller *self)
{
self->epoll_fd = epoll_create (POLLER_MIN_ALLOC);
hard_assert (self->epoll_fd != -1);
set_cloexec (self->epoll_fd);
self->len = 0;
self->alloc = POLLER_MIN_ALLOC;
self->info = xcalloc (self->alloc, sizeof *self->info);
self->revents = xcalloc (self->alloc, sizeof *self->revents);
self->dispatch_iterator = -1;
self->dispatch_total = 0;
}
static void
poller_free (struct poller *self)
{
for (size_t i = 0; i < self->len; i++)
{
struct poller_info *info = self->info[i];
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, info->fd, (void *) "") != -1);
free (info);
}
xclose (self->epoll_fd);
free (self->info);
free (self->revents);
}
static ssize_t
poller_find_by_fd (struct poller *self, int fd)
{
for (size_t i = 0; i < self->len; i++)
if (self->info[i]->fd == fd)
return i;
return -1;
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
self->revents = xreallocarray
(self->revents, sizeof *self->revents, self->alloc);
self->info = xreallocarray
(self->info, sizeof *self->info, self->alloc);
}
static int
poller_epoll_to_poll_events (int events)
{
int result = 0;
if (events & EPOLLIN) result |= POLLIN;
if (events & EPOLLOUT) result |= POLLOUT;
if (events & EPOLLERR) result |= POLLERR;
if (events & EPOLLHUP) result |= POLLHUP;
if (events & EPOLLPRI) result |= POLLPRI;
return result;
}
static uint32_t
poller_poll_to_epoll_events (uint32_t events)
{
uint32_t result = 0;
if (events & POLLIN) result |= EPOLLIN;
if (events & POLLOUT) result |= EPOLLOUT;
if (events & POLLERR) result |= EPOLLERR;
if (events & POLLHUP) result |= EPOLLHUP;
if (events & POLLPRI) result |= EPOLLPRI;
return result;
}
static void
poller_set (struct poller *self, int fd, short int events,
poller_dispatcher_func dispatcher, void *data)
{
ssize_t index = poller_find_by_fd (self, fd);
bool modifying = true;
if (index == -1)
{
poller_ensure_space (self);
self->info[index = self->len++] = xcalloc (1, sizeof **self->info);
modifying = false;
}
struct poller_info *info = self->info[index];
info->fd = fd;
info->dispatcher = dispatcher;
info->user_data = data;
struct epoll_event event;
event.events = poller_poll_to_epoll_events (events);
event.data.ptr = info;
hard_assert (epoll_ctl (self->epoll_fd,
modifying ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, fd, &event) != -1);
}
static void
poller_remove_from_dispatch (struct poller *self,
const struct poller_info *info)
{
if (self->dispatch_iterator == -1)
return;
int i;
for (i = self->dispatch_iterator; i < self->dispatch_total; i++)
if (self->revents[i].data.ptr == info)
break;
if (i == self->dispatch_total)
return;
if (i != --self->dispatch_total)
self->revents[i] = self->revents[self->dispatch_total];
// We've removed the element we're currently processing; go back one entry
// so that we don't skip the one we might have replaced it with.
if (i == self->dispatch_iterator)
self->dispatch_iterator--;
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_info *info = self->info[index];
poller_remove_from_dispatch (self, info);
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, info->fd, (void *) "") != -1);
free (info);
if (index != --self->len)
self->info[index] = self->info[self->len];
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (self->dispatch_iterator == -1);
int n_fds;
do
n_fds = epoll_wait (self->epoll_fd, self->revents, self->len, -1);
while (n_fds == -1 && errno == EINTR);
if (n_fds == -1)
{
print_fatal ("%s: %s", "epoll", strerror (errno));
exit (EXIT_FAILURE);
}
for (int i = 0; i < n_fds; i++)
{
struct epoll_event *revents = self->revents + i;
struct poller_info *info = revents->data.ptr;
struct pollfd pfd;
pfd.fd = info->fd;
pfd.revents = poller_epoll_to_poll_events (revents->events);
pfd.events = poller_epoll_to_poll_events (info->events);
self->dispatch_iterator = i;
self->dispatch_total = n_fds;
info->dispatcher (&pfd, info->user_data);
i = self->dispatch_iterator;
n_fds = self->dispatch_total;
}
self->dispatch_iterator = -1;
self->dispatch_total = 0;
}
#else // !__linux__
struct poller_info
{
poller_dispatcher_func dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller
{
struct pollfd *fds; ///< Polled descriptors
struct poller_info *fds_info; ///< Additional information for each FD
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
int dispatch_index; ///< The currently dispatched FD or -1
};
static void
poller_init (struct poller *self)
{
self->alloc = POLLER_MIN_ALLOC;
self->len = 0;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->fds_info = xcalloc (self->alloc, sizeof *self->fds_info);
self->dispatch_index = -1;
}
static void
poller_free (struct poller *self)
{
free (self->fds);
free (self->fds_info);
}
static ssize_t
poller_find_by_fd (struct poller *self, int fd)
{
for (size_t i = 0; i < self->len; i++)
if (self->fds[i].fd == fd)
return i;
return -1;
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
self->fds = xreallocarray (self->fds, sizeof *self->fds, self->alloc);
self->fds_info = xreallocarray
(self->fds_info, sizeof *self->fds_info, self->alloc);
}
static void
poller_set (struct poller *self, int fd, short int events,
poller_dispatcher_func dispatcher, void *data)
{
ssize_t index = poller_find_by_fd (self, fd);
if (index == -1)
{
poller_ensure_space (self);
index = self->len++;
}
struct pollfd *new_entry = self->fds + index;
memset (new_entry, 0, sizeof *new_entry);
new_entry->fd = fd;
new_entry->events = events;
self->fds_info[self->len] = (struct poller_info) { dispatcher, data };
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
if (index == --self->len)
return;
// Make sure that we don't disrupt the dispatch loop; kind of crude
if ((int) index < self->dispatch_index)
{
memmove (self->fds + index, self->fds + index + 1,
(self->len - index) * sizeof *self->fds);
memmove (self->fds_info + index, self->fds_info + index + 1,
(self->len - index) * sizeof *self->fds_info);
}
else
{
self->fds[index] = self->fds[self->len];
self->fds_info[index] = self->fds_info[self->len];
}
if ((int) index <= self->dispatch_index)
self->dispatch_index--;
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (self->dispatch_index == -1);
int result;
do
result = poll (self->fds, self->len, -1);
while (result == -1 && errno == EINTR);
if (result == -1)
{
print_fatal ("%s: %s", "poll", strerror (errno));
exit (EXIT_FAILURE);
}
for (int i = 0; i < (int) self->len; i++)
{
struct pollfd pfd = self->fds[i];
if (!pfd.revents)
continue;
struct poller_info *info = self->fds_info + i;
self->dispatch_index = i;
info->dispatcher (&pfd, info->user_data);
i = self->dispatch_index;
}
self->dispatch_index = -1;
}
#endif // !__linux__
// --- Utilities ---------------------------------------------------------------
static void
split_str_ignore_empty (const char *s, char delimiter, struct str_vector *out)
{
const char *begin = s, *end;
while ((end = strchr (begin, delimiter)))
{
if (begin != end)
str_vector_add_owned (out, xstrndup (begin, end - begin));
begin = ++end;
}
if (*begin)
str_vector_add (out, begin);
}
static char *
strip_str_in_place (char *s, const char *stripped_chars)
{
char *end = s + strlen (s);
while (end > s && strchr (stripped_chars, end[-1]))
*--end = '\0';
char *start = s + strspn (s, stripped_chars);
if (start > s)
memmove (s, start, end - start + 1);
return s;
}
static bool
str_append_env_path (struct str *output, const char *var, bool only_absolute)
{
const char *value = getenv (var);
if (!value || (only_absolute && *value != '/'))
return false;
str_append (output, value);
return true;
}
static void
get_xdg_home_dir (struct str *output, const char *var, const char *def)
{
str_reset (output);
if (!str_append_env_path (output, var, true))
{
str_append_env_path (output, "HOME", false);
str_append_c (output, '/');
str_append (output, def);
}
}
static size_t io_error_domain_tag;
#define IO_ERROR (error_resolve_domain (&io_error_domain_tag))
enum
{
IO_ERROR_FAILED
};
static bool
ensure_directory_existence (const char *path, struct error **e)
{
struct stat st;
if (stat (path, &st))
{
if (mkdir (path, S_IRWXU | S_IRWXG | S_IRWXO))
{
error_set (e, IO_ERROR, IO_ERROR_FAILED,
"cannot create directory `%s': %s",
path, strerror (errno));
return false;
}
}
else if (!S_ISDIR (st.st_mode))
{
error_set (e, IO_ERROR, IO_ERROR_FAILED,
"cannot create directory `%s': %s",
path, "file exists but is not a directory");
return false;
}
return true;
}
static bool
mkdir_with_parents (char *path, struct error **e)
{
char *p = path;
// XXX: This is prone to the TOCTTOU problem. The solution would be to
// rewrite the function using the {mkdir,fstat}at() functions from
// POSIX.1-2008, ideally returning a file descriptor to the open
// directory, with the current code as a fallback. Or to use chdir().
while ((p = strchr (p + 1, '/')))
{
*p = '\0';
bool success = ensure_directory_existence (path, e);
*p = '/';
if (!success)
return false;
}
return ensure_directory_existence (path, e);
}
static bool
set_boolean_if_valid (bool *out, const char *s)
{
if (!strcasecmp (s, "yes")) *out = true;
else if (!strcasecmp (s, "no")) *out = false;
else if (!strcasecmp (s, "on")) *out = true;
else if (!strcasecmp (s, "off")) *out = false;
else if (!strcasecmp (s, "true")) *out = true;
else if (!strcasecmp (s, "false")) *out = false;
else return false;
return true;
}
static void
regerror_to_str (int code, const regex_t *preg, struct str *out)
{
size_t required = regerror (code, preg, NULL, 0);
str_ensure_space (out, required);
out->len += regerror (code, preg,
out->str + out->len, out->alloc - out->len) - 1;
}
static size_t regex_error_domain_tag;
#define REGEX_ERROR (error_resolve_domain (®ex_error_domain_tag))
enum
{
REGEX_ERROR_COMPILATION_FAILED
};
static bool
regex_match (const char *regex, const char *s, struct error **e)
{
regex_t re;
int err = regcomp (&re, regex, REG_EXTENDED | REG_NOSUB);
if (err)
{
struct str desc;
str_init (&desc);
regerror_to_str (err, &re, &desc);
error_set (e, REGEX_ERROR, REGEX_ERROR_COMPILATION_FAILED,
"failed to compile regular expression: %s", desc.str);
str_free (&desc);
return false;
}
bool result = regexec (&re, s, 0, NULL, 0) != REG_NOMATCH;
regfree (&re);
return result;
}
static bool
read_line (FILE *fp, struct str *s)
{
int c;
bool at_end = true;
str_reset (s);
while ((c = fgetc (fp)) != EOF)
{
at_end = false;
if (c == '\r')
continue;
if (c == '\n')
break;
str_append_c (s, c);
}
return !at_end;
}
// --- IRC utilities -----------------------------------------------------------
struct irc_message
{
char *prefix;
char *command;
struct str_vector params;
};
static void
irc_parse_message (struct irc_message *msg, const char *line)
{
msg->prefix = NULL;
msg->command = NULL;
str_vector_init (&msg->params);
// Prefix
if (*line == ':')
{
size_t prefix_len = strcspn (++line, " ");
msg->prefix = xstrndup (line, prefix_len);
line += prefix_len;
}
// Command name
{
while (*line == ' ')
line++;
size_t cmd_len = strcspn (line, " ");
msg->command = xstrndup (line, cmd_len);
line += cmd_len;
}
// Arguments
while (true)
{
while (*line == ' ')
line++;
if (*line == ':')
{
str_vector_add (&msg->params, ++line);
break;
}
size_t param_len = strcspn (line, " ");
if (!param_len)
break;
str_vector_add_owned (&msg->params, xstrndup (line, param_len));
line += param_len;
}
}
static void
irc_free_message (struct irc_message *msg)
{
free (msg->prefix);
free (msg->command);
str_vector_free (&msg->params);
}
static void
irc_process_buffer (struct str *buf,
void (*callback)(const struct irc_message *, const char *, void *),
void *user_data)
{
char *start = buf->str;
char *end = start + buf->len;
for (char *p = start; p + 1 < end; p++)
{
// Split the input on newlines
if (p[0] != '\r' || p[1] != '\n')
continue;
*p = 0;
struct irc_message msg;
irc_parse_message (&msg, start);
callback (&msg, start, user_data);
irc_free_message (&msg);
start = p + 2;
}
str_remove_slice (buf, 0, start - buf->str);
}
// --- Configuration -----------------------------------------------------------
// The keys are stripped of surrounding whitespace, the values are not.
static size_t config_error_domain_tag;
#define CONFIG_ERROR (error_resolve_domain (&config_error_domain_tag))
enum
{
CONFIG_ERROR_MALFORMED
};
struct config_item
{
const char *key;
const char *default_value;
const char *description;
};
static FILE *
get_config_file (void)
{
struct str_vector paths;
struct str config_home, file;
const char *xdg_config_dirs;
unsigned i;
FILE *fp = NULL;
str_vector_init (&paths);
str_init (&config_home);
get_xdg_home_dir (&config_home, "XDG_CONFIG_HOME", ".config");
str_vector_add (&paths, config_home.str);
str_free (&config_home);
if ((xdg_config_dirs = getenv ("XDG_CONFIG_DIRS")))
split_str_ignore_empty (xdg_config_dirs, ':', &paths);
str_init (&file);
for (i = 0; i < paths.len; i++)
{
// As per spec, relative paths are ignored
if (*paths.vector[i] != '/')
continue;
str_reset (&file);
str_append (&file, paths.vector[i]);
str_append (&file, "/" PROGRAM_NAME "/" PROGRAM_NAME ".conf");
if ((fp = fopen (file.str, "r")))
break;
}
str_free (&file);
str_vector_free (&paths);
return fp;
}
static bool
read_config_file (struct str_map *config, struct error **e)
{
struct str line;
FILE *fp = get_config_file ();
unsigned line_no = 0;
bool errors = false;
if (!fp)
return true;
str_init (&line);
for (line_no = 1; read_line (fp, &line); line_no++)
{
char *start = line.str;
if (*start == '#')
continue;
while (isspace (*start))
start++;
char *end = strchr (start, '=');
if (!end)
{
if (*start)
{
error_set (e, CONFIG_ERROR, CONFIG_ERROR_MALFORMED,
"line %u in config: %s", line_no, "malformed input");
errors = true;
break;
}
}
else
{
char *value = end + 1;
do
*end = '\0';
while (isspace (*--end));
str_map_set (config, start, xstrdup (value));
}
}
str_free (&line);
fclose (fp);
return !errors;
}
// --- Configuration (application-specific) ------------------------------------
static struct config_item g_config_table[] =
{
{ "nickname", "ZyklonB", "IRC nickname" },
{ "username", "bot", "IRC user name" },
{ "fullname", "ZyklonB IRC bot", "IRC full name/e-mail" },
{ "irc_host", NULL, "Address of the IRC server" },
{ "irc_port", "6667", "Port of the IRC server" },
{ "ssl_use", "off", "Whether to use SSL" },
{ "ssl_cert", NULL, "Client SSL certificate (PEM)" },
{ "autojoin", NULL, "Channels to join on start" },
{ "reconnect", "on", "Whether to reconnect on error" },
{ "reconnect_delay", "5", "Time between reconnecting" },
{ "prefix", ":", "The prefix for bot commands" },
{ "admin", NULL, "Host mask for administrators" },
{ "plugins", NULL, "The plugins to load on startup" },
{ "plugin_dir", NULL, "Where to search for plugins" },
{ "recover", "on", "Whether to re-launch on crash" },
};
static void
load_config_defaults (struct str_map *config)
{
for (size_t i = 0; i < N_ELEMENTS (g_config_table); i++)
{
const struct config_item *item = g_config_table + i;
if (item->default_value)
str_map_set (config, item->key, xstrdup (item->default_value));
}
}
// --- Application data --------------------------------------------------------
struct plugin_data
{
struct plugin_data *next; ///< The next link in a chain
struct plugin_data *prev; ///< The previous link in a chain
struct bot_context *ctx; ///< Parent context
pid_t pid; ///< PID of the plugin process
char *name; ///< Plugin identifier
bool is_zombie; ///< Whether the child is a zombie
bool initialized; ///< Ready to exchange IRC messages
struct str queued_output; ///< Output queued up until initialized
// Since we're doing non-blocking I/O, we need to queue up data so that
// we don't stall on plugins unnecessarily.
int read_fd; ///< The read end of the comm. pipe
struct str read_buffer; ///< Unprocessed input
int write_fd; ///< The write end of the comm. pipe
struct str write_buffer; ///< Output yet to be sent out
};
static void
plugin_data_init (struct plugin_data *self)
{
memset (self, 0, sizeof *self);
self->pid = -1;
str_init (&self->queued_output);
self->read_fd = -1;
str_init (&self->read_buffer);
self->write_fd = -1;
str_init (&self->write_buffer);
}
static void
plugin_data_free (struct plugin_data *self)
{
soft_assert (self->pid == -1);
free (self->name);
str_free (&self->read_buffer);
if (!soft_assert (self->read_fd == -1))
xclose (self->read_fd);
str_free (&self->write_buffer);
if (!soft_assert (self->write_fd == -1))
xclose (self->write_fd);
if (!self->initialized)
str_free (&self->queued_output);
}
static size_t connect_error_domain_tag;
#define CONNECT_ERROR (error_resolve_domain (&connect_error_domain_tag))
enum
{
CONNECT_ERROR_INVALID_CONFIGURATION,
CONNECT_ERROR_FAILED
};
struct bot_context
{
struct str_map config; ///< User configuration
int irc_fd; ///< Socket FD of the server
struct str read_buffer; ///< Input yet to be processed
bool irc_ready; ///< Whether we may send messages now
SSL_CTX *ssl_ctx; ///< SSL context
SSL *ssl; ///< SSL connection
struct plugin_data *plugins; ///< Linked list of plugins
struct str_map plugins_by_name; ///< Indexes @em plugins by their name
struct poller poller; ///< Manages polled descriptors
bool quitting; ///< User requested quitting
bool polling; ///< The event loop is running
};
static void
bot_context_init (struct bot_context *ctx)
{
str_map_init (&ctx->config);
ctx->config.free = free;
load_config_defaults (&ctx->config);
ctx->irc_fd = -1;
str_init (&ctx->read_buffer);
ctx->irc_ready = false;
ctx->ssl = NULL;
ctx->ssl_ctx = NULL;
ctx->plugins = NULL;
str_map_init (&ctx->plugins_by_name);
poller_init (&ctx->poller);
ctx->quitting = false;
ctx->polling = false;
}
static void
bot_context_free (struct bot_context *ctx)
{
str_map_free (&ctx->config);
str_free (&ctx->read_buffer);
// TODO: terminate the plugins properly before this is called
struct plugin_data *link, *tmp;
for (link = ctx->plugins; link; link = tmp)
{
tmp = link->next;
plugin_data_free (link);
free (link);
}
if (ctx->irc_fd != -1)
xclose (ctx->irc_fd);
if (ctx->ssl)
SSL_free (ctx->ssl);
if (ctx->ssl_ctx)
SSL_CTX_free (ctx->ssl_ctx);
str_map_free (&ctx->plugins_by_name);
poller_free (&ctx->poller);
}
static void
irc_shutdown (struct bot_context *ctx)
{
// Generally non-critical
if (ctx->ssl)
soft_assert (SSL_shutdown (ctx->ssl) != -1);
else
soft_assert (shutdown (ctx->irc_fd, SHUT_WR) == 0);
}
static void
initiate_quit (struct bot_context *ctx)
{
irc_shutdown (ctx);
ctx->quitting = true;
}
static void
try_finish_quit (struct bot_context *ctx)
{
if (!ctx->quitting)
return;
if (ctx->irc_fd == -1 && !ctx->plugins)
ctx->polling = false;
}
static bool irc_send (struct bot_context *ctx,
const char *format, ...) ATTRIBUTE_PRINTF (2, 3);
// XXX: is it okay to just ignore the return value and wait until we receive
// it in on_irc_readable()?
static bool
irc_send (struct bot_context *ctx, const char *format, ...)
{
va_list ap;
if (g_debug_mode)
{
fputs ("[IRC] <== \"", stderr);
va_start (ap, format);
vfprintf (stderr, format, ap);
va_end (ap);
fputs ("\"\n", stderr);
}
soft_assert (ctx->irc_fd != -1);
va_start (ap, format);
struct str str;
str_init (&str);
str_append_vprintf (&str, format, ap);
str_append (&str, "\r\n");
va_end (ap);
bool result = true;
if (ctx->ssl)
{
// TODO: call SSL_get_error() to detect if a clean shutdown has occured
if (SSL_write (ctx->ssl, str.str, str.len) != (int) str.len)
{
print_debug ("%s: %s: %s", __func__, "SSL_write",
ERR_error_string (ERR_get_error (), NULL));
result = false;
}
}
else if (write (ctx->irc_fd, str.str, str.len) != (ssize_t) str.len)
{
print_debug ("%s: %s: %s", __func__, "write", strerror (errno));
result = false;
}
str_free (&str);
return result;
}
static bool
irc_initialize_ssl (struct bot_context *ctx, struct error **e)
{
ctx->ssl_ctx = SSL_CTX_new (SSLv23_client_method ());
if (!ctx->ssl_ctx)
goto error_ssl_1;
// We don't care; some encryption is always better than no encryption
SSL_CTX_set_verify (ctx->ssl_ctx, SSL_VERIFY_NONE, NULL);
// XXX: maybe we should call SSL_CTX_set_options() for some workarounds
ctx->ssl = SSL_new (ctx->ssl_ctx);
if (!ctx->ssl)
goto error_ssl_2;
const char *ssl_cert = str_map_find (&ctx->config, "ssl_cert");
if (ssl_cert
&& !SSL_use_certificate_file (ctx->ssl, ssl_cert, SSL_FILETYPE_PEM))
{
// XXX: perhaps we should read the file ourselves for better messages
print_error ("%s: %s", "setting the SSL client certificate failed",
ERR_error_string (ERR_get_error (), NULL));
}
SSL_set_connect_state (ctx->ssl);
if (!SSL_set_fd (ctx->ssl, ctx->irc_fd))
goto error_ssl_3;
// Avoid SSL_write() returning SSL_ERROR_WANT_READ
SSL_set_mode (ctx->ssl, SSL_MODE_AUTO_RETRY);
if (SSL_connect (ctx->ssl) > 0)
return true;
error_ssl_3:
SSL_free (ctx->ssl);
ctx->ssl = NULL;
error_ssl_2:
SSL_CTX_free (ctx->ssl_ctx);
ctx->ssl_ctx = NULL;
error_ssl_1:
// XXX: these error strings are really nasty; also there could be
// multiple errors on the OpenSSL stack.
error_set (e, CONNECT_ERROR, CONNECT_ERROR_FAILED,
"%s: %s", "could not initialize SSL",
ERR_error_string (ERR_get_error (), NULL));
return false;
}
static bool
irc_establish_connection (struct bot_context *ctx,
const char *host, const char *port, bool use_ssl, struct error **e)
{
struct addrinfo gai_hints, *gai_result, *gai_iter;
memset (&gai_hints, 0, sizeof gai_hints);
// We definitely want TCP.
gai_hints.ai_socktype = SOCK_STREAM;
int err = getaddrinfo (host, port, &gai_hints, &gai_result);
if (err)
{
error_set (e, CONNECT_ERROR, CONNECT_ERROR_FAILED, "%s: %s: %s",
"connection failed", "getaddrinfo", gai_strerror (err));
return false;
}
int sockfd;
for (gai_iter = gai_result; gai_iter; gai_iter = gai_iter->ai_next)
{
sockfd = socket (gai_iter->ai_family,
gai_iter->ai_socktype, gai_iter->ai_protocol);
if (sockfd == -1)
continue;
set_cloexec (sockfd);
int yes = 1;
soft_assert (setsockopt (sockfd, SOL_SOCKET, SO_KEEPALIVE,
&yes, sizeof yes) != -1);
const char *real_host = host;
// Let's try to resolve the address back into a real hostname;
// we don't really need this, so we can let it quietly fail
char buf[NI_MAXHOST];
err = getnameinfo (gai_iter->ai_addr, gai_iter->ai_addrlen,
buf, sizeof buf, NULL, 0, 0);
if (err)
print_debug ("%s: %s", "getnameinfo", gai_strerror (err));
else
real_host = buf;
// XXX: we shouldn't mix these statuses with `struct error'; choose 1!
print_status ("connecting to `%s:%s'...", real_host, port);
if (!connect (sockfd, gai_iter->ai_addr, gai_iter->ai_addrlen))
break;
xclose (sockfd);
}
freeaddrinfo (gai_result);
if (!gai_iter)
{
error_set (e, CONNECT_ERROR, CONNECT_ERROR_FAILED, "connection failed");
return false;
}
ctx->irc_fd = sockfd;
if (use_ssl && !irc_initialize_ssl (ctx, e))
{
xclose (ctx->irc_fd);
ctx->irc_fd = -1;
return false;
}
print_status ("connection established");
return true;
}
// --- Signals -----------------------------------------------------------------
static int g_signal_pipe[2]; ///< A pipe used to signal... signals
static struct str_vector
g_original_argv, ///< Original program arguments
g_recovery_env; ///< Environment for re-exec recovery
/// Program termination has been requested by a signal
static volatile sig_atomic_t g_termination_requested;
/// Points to startup reason location within `g_recovery_environment'
static char **g_startup_reason_location;
/// The environment variable used to pass the startup reason when re-executing
static const char g_startup_reason_str[] = "STARTUP_REASON";
static void
sigchld_handler (int signum)
{
(void) signum;
int original_errno = errno;
// Just so that the read end of the pipe wakes up the poller.
// NOTE: Linux has signalfd() and eventfd(), and the BSD's have kqueue.
// All of them are better than this approach, although platform-specific.
if (write (g_signal_pipe[1], "c", 1) == -1)
soft_assert (errno == EAGAIN);
errno = original_errno;
}
static void
sigterm_handler (int signum)
{
(void) signum;
g_termination_requested = true;
int original_errno = errno;
if (write (g_signal_pipe[1], "t", 1) == -1)
soft_assert (errno == EAGAIN);
errno = original_errno;
}
static void
setup_signal_handlers (void)
{
if (pipe (g_signal_pipe) == -1)
{
print_fatal ("pipe: %s", strerror (errno));
exit (EXIT_FAILURE);
}
set_cloexec (g_signal_pipe[0]);
set_cloexec (g_signal_pipe[1]);
// So that the pipe cannot overflow; it would make write() block within
// the signal handler, which is something we really don't want to happen.
// The same holds true for read().
set_blocking (g_signal_pipe[0], false);
set_blocking (g_signal_pipe[1], false);
struct sigaction sa;
sa.sa_flags = SA_RESTART;
sa.sa_handler = sigchld_handler;
sigemptyset (&sa.sa_mask);
if (sigaction (SIGCHLD, &sa, NULL) == -1)
{
print_fatal ("sigaction: %s", strerror (errno));
exit (EXIT_FAILURE);
}
signal (SIGPIPE, SIG_IGN);
sa.sa_handler = sigterm_handler;
if (sigaction (SIGINT, &sa, NULL) == -1
|| sigaction (SIGTERM, &sa, NULL) == -1)
print_error ("sigaction: %s", strerror (errno));
}
static void
translate_signal_info (int no, const char **name, int code, const char **reason)
{
if (code == SI_USER) *reason = "signal sent by kill()";
if (code == SI_QUEUE) *reason = "signal sent by sigqueue()";
switch (no)
{
case SIGILL:
*name = "SIGILL";
if (code == ILL_ILLOPC) *reason = "illegal opcode";
if (code == ILL_ILLOPN) *reason = "illegal operand";
if (code == ILL_ILLADR) *reason = "illegal addressing mode";
if (code == ILL_ILLTRP) *reason = "illegal trap";
if (code == ILL_PRVOPC) *reason = "privileged opcode";
if (code == ILL_PRVREG) *reason = "privileged register";
if (code == ILL_COPROC) *reason = "coprocessor error";
if (code == ILL_BADSTK) *reason = "internal stack error";
break;
case SIGFPE:
*name = "SIGFPE";
if (code == FPE_INTDIV) *reason = "integer divide by zero";
if (code == FPE_INTOVF) *reason = "integer overflow";
if (code == FPE_FLTDIV) *reason = "floating-point divide by zero";
if (code == FPE_FLTOVF) *reason = "floating-point overflow";
if (code == FPE_FLTUND) *reason = "floating-point underflow";
if (code == FPE_FLTRES) *reason = "floating-point inexact result";
if (code == FPE_FLTINV) *reason = "invalid floating-point operation";
if (code == FPE_FLTSUB) *reason = "subscript out of range";
break;
case SIGSEGV:
*name = "SIGSEGV";
if (code == SEGV_MAPERR)
*reason = "address not mapped to object";
if (code == SEGV_ACCERR)
*reason = "invalid permissions for mapped object";
break;
case SIGBUS:
*name = "SIGBUS";
if (code == BUS_ADRALN) *reason = "invalid address alignment";
if (code == BUS_ADRERR) *reason = "nonexistent physical address";
if (code == BUS_OBJERR) *reason = "object-specific hardware error";
break;
default:
*name = NULL;
}
}
static void
recovery_handler (int signum, siginfo_t *info, void *context)
{
(void) context;
// TODO: maybe try to force a core dump like this: if (fork() == 0) return;
// TODO: maybe we could even send "\r\nQUIT :reason\r\n" to the server. >_>
// As long as we're not connected via TLS, that is.
const char *signal_name = NULL, *reason = NULL;
translate_signal_info (signum, &signal_name, info->si_code, &reason);
char buf[128], numbuf[8];
if (!signal_name)
{
snprintf (numbuf, sizeof numbuf, "%d", signum);
signal_name = numbuf;
}
if (reason)
snprintf (buf, sizeof buf, "%s=%s: %s: %s", g_startup_reason_str,
"signal received", signal_name, reason);
else
snprintf (buf, sizeof buf, "%s=%s: %s", g_startup_reason_str,
"signal received", signal_name);
*g_startup_reason_location = buf;
// TODO: maybe pregenerate the path, see the following for some other ways
// that would be illegal to do from within a signal handler:
// http://stackoverflow.com/a/1024937
// http://stackoverflow.com/q/799679
// Especially if we change the current working directory in the program.
//
// Note that I can just overwrite g_orig_argv[0].
// NOTE: our children will read EOF on the read ends of their pipes as a
// a result of O_CLOEXEC. That should be enough to make them terminate.
char **argv = g_original_argv.vector, **argp = g_recovery_env.vector;
execve ("/proc/self/exe", argv, argp); // Linux
execve ("/proc/curproc/file", argv, argp); // BSD
execve ("/proc/curproc/exe", argv, argp); // BSD
execve ("/proc/self/path/a.out", argv, argp); // Solaris
execve (argv[0], argv, argp); // unreliable fallback
// Let's just crash
perror ("execve");
signal (signum, SIG_DFL);
raise (signum);
}
static void
prepare_recovery_environment (void)
{
str_vector_init (&g_recovery_env);
str_vector_add_vector (&g_recovery_env, environ);
// Prepare a location within the environment where we will put the startup
// (or maybe rather restart) reason in case of an irrecoverable error.
char **iter;
for (iter = g_recovery_env.vector; *iter; iter++)
{
const size_t len = sizeof g_startup_reason_str - 1;
if (!strncmp (*iter, g_startup_reason_str, len) && (*iter)[len] == '=')
break;
}
if (iter)
g_startup_reason_location = iter;
else
{
str_vector_add (&g_recovery_env, "");
g_startup_reason_location =
g_recovery_env.vector + g_recovery_env.len - 1;
}
}
static void
setup_recovery_handler (struct bot_context *ctx)
{
const char *recover_str = str_map_find (&ctx->config, "recover");
hard_assert (recover_str != NULL); // We have a default value for this
bool recover;
if (!set_boolean_if_valid (&recover, recover_str))
{
print_fatal ("invalid configuration value for `%s'", "recover");
exit (EXIT_FAILURE);
}
if (!recover)
return;
// Make sure these signals aren't blocked, otherwise we would be unable
// to handle them, making the critical conditions fatal.
sigset_t mask;
sigemptyset (&mask);
sigaddset (&mask, SIGSEGV);
sigaddset (&mask, SIGBUS);
sigaddset (&mask, SIGFPE);
sigaddset (&mask, SIGILL);
sigprocmask (SIG_UNBLOCK, &mask, NULL);
struct sigaction sa;
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = recovery_handler;
sigemptyset (&sa.sa_mask);
prepare_recovery_environment ();
// TODO: also handle SIGABRT... or avoid doing abort() in the first place?
if (sigaction (SIGSEGV, &sa, NULL) == -1
|| sigaction (SIGBUS, &sa, NULL) == -1
|| sigaction (SIGFPE, &sa, NULL) == -1
|| sigaction (SIGILL, &sa, NULL) == -1)
print_error ("sigaction: %s", strerror (errno));
}
// --- Plugins -----------------------------------------------------------------
/// The name of the special IRC command for interprocess communication
static const char *plugin_ipc_command = "ZYKLONB";
static size_t plugin_error_domain_tag;
#define PLUGIN_ERROR (error_resolve_domain (&plugin_error_domain_tag))
enum
{
PLUGIN_ERROR_ALREADY_LOADED,
PLUGIN_ERROR_NOT_LOADED,
PLUGIN_ERROR_LOADING_FAILED
};
static struct plugin_data *
plugin_find_by_pid (struct bot_context *ctx, pid_t pid)
{
struct plugin_data *iter;
for (iter = ctx->plugins; iter; iter = iter->next)
if (iter->pid == pid)
return iter;
return NULL;
}
static bool
plugin_zombify (struct plugin_data *plugin)
{
if (plugin->is_zombie)
return false;
// FIXME: make sure that we don't remove entries from the poller while we
// still may have stuff to read; maybe just check that the read pipe is
// empty before closing it... and then on EOF check if `pid == -1' and
// only then dispose of it (it'd be best to simulate that both of these
// cases may happen).
ssize_t poller_idx =
poller_find_by_fd (&plugin->ctx->poller, plugin->write_fd);
if (poller_idx != -1)
poller_remove_at_index (&plugin->ctx->poller, poller_idx);
// TODO: try to flush the write buffer (non-blocking)?
// The plugin should terminate itself after it receives EOF.
xclose (plugin->write_fd);
plugin->write_fd = -1;
// Make it a pseudo-anonymous zombie. In this state we process any
// remaining commands it attempts to send to us before it finally dies.
str_map_set (&plugin->ctx->plugins_by_name, plugin->name, NULL);
plugin->is_zombie = true;
return true;
}
static void
on_plugin_writable (const struct pollfd *fd, struct plugin_data *plugin)
{
struct bot_context *ctx = plugin->ctx;
struct str *buf = &plugin->write_buffer;
size_t written_total = 0;
// TODO: see "Advanced Programming in the UNIX Environment" Figure C.19;
// check for any unexpected behaviour that might occur
if (fd->revents != POLLOUT)
print_debug ("poller fd %d: revents: %d", fd->fd, fd->revents);
while (written_total != buf->len)
{
ssize_t n_written = write (fd->fd, buf->str + written_total,
buf->len - written_total);
if (n_written < 0)
{
if (errno == EAGAIN)
break;
if (!soft_assert (errno == EINTR) && !plugin->is_zombie)
{
print_debug ("%s: %s", "recv", strerror (errno));
print_error ("failure on writing to plugin `%s',"
" therefore I'm unloading it", plugin->name);
plugin_zombify (plugin);
break;
}
}
// This may be equivalent to EAGAIN on some implementations
if (n_written == 0)
break;
written_total += n_written;
}
if (written_total != 0)
str_remove_slice (buf, 0, written_total);
if (buf->len == 0)
{
// Everything has been written, there's no need to end up in here again
ssize_t index = poller_find_by_fd (&ctx->poller, fd->fd);
if (index != -1)
poller_remove_at_index (&ctx->poller, index);
}
}
static void
plugin_queue_write (struct plugin_data *plugin)
{
if (plugin->is_zombie)
return;
// Don't let the write buffer grow infinitely. If there's a ton of data
// waiting to be processed by the plugin, it usually means there's something
// wrong with it (such as someone stopping the process).
if (plugin->write_buffer.len >= (1 << 20))
{
print_warning ("plugin `%s' does not seem to process messages fast"
" enough, I'm unloading it", plugin->name);
plugin_zombify (plugin);
return;
}
poller_set (&plugin->ctx->poller, plugin->write_fd, POLLOUT,
(poller_dispatcher_func) on_plugin_writable, plugin);
}
static void
plugin_send (struct plugin_data *plugin, const char *format, ...)
ATTRIBUTE_PRINTF (2, 3);
static void
plugin_send (struct plugin_data *plugin, const char *format, ...)
{
va_list ap;
if (g_debug_mode)
{
fprintf (stderr, "[%s] <-- \"", plugin->name);
va_start (ap, format);
vfprintf (stderr, format, ap);
va_end (ap);
fputs ("\"\n", stderr);
}
va_start (ap, format);
str_append_vprintf (&plugin->write_buffer, format, ap);
va_end (ap);
str_append (&plugin->write_buffer, "\r\n");
plugin_queue_write (plugin);
}
static void
plugin_process_message (const struct irc_message *msg,
const char *raw, void *user_data)
{
struct plugin_data *plugin = user_data;
struct bot_context *ctx = plugin->ctx;
if (g_debug_mode)
fprintf (stderr, "[%s] --> \"%s\"\n", plugin->name, raw);
if (!strcasecmp (msg->command, plugin_ipc_command))
{
// Replies are sent in the order in which they came in, so there's
// no need to attach a special identifier to them. It might be
// desirable in some cases, though.
if (msg->params.len < 1)
return;
const char *command = msg->params.vector[0];
if (!strcasecmp (command, "register"))
{
// Register for relaying of IRC traffic
plugin->initialized = true;
// Flush any queued up traffic here. The point of queuing it in
// the first place is so that we don't have to wait for plugin
// initialization during startup.
//
// Note that if we start filtering data coming to the plugins e.g.
// based on what it tells us upon registration, we might need to
// filter `queued_output' as well.
str_append_str (&plugin->write_buffer, &plugin->queued_output);
str_free (&plugin->queued_output);
// NOTE: this may trigger the buffer length check
plugin_queue_write (plugin);
}
else if (!strcasecmp (command, "get_config"))
{
if (msg->params.len < 2)
return;
const char *value =
str_map_find (&ctx->config, msg->params.vector[1]);
// TODO: escape the value (although there's no need to ATM)
plugin_send (plugin, "%s :%s",
plugin_ipc_command, value ? value : "");
}
else if (!strcasecmp (command, "print"))
{
if (msg->params.len < 2)
return;
printf ("%s", msg->params.vector[1]);
}
}
else if (plugin->initialized)
{
// Pass everything else through to the IRC server
irc_send (ctx, "%s", raw);
}
}
static void
on_plugin_readable (const struct pollfd *fd, struct plugin_data *plugin)
{
// TODO: see "Advanced Programming in the UNIX Environment" Figure C.19;
// check for any unexpected behaviour that might occur
if (fd->revents != POLLIN)
print_debug ("poller fd %d: revents: %d", fd->fd, fd->revents);
// TODO: see if I can reuse irc_fill_read_buffer()
struct str *buf = &plugin->read_buffer;
while (true)
{
str_ensure_space (buf, 512 + 1);
ssize_t n_read = read (fd->fd, buf->str + buf->len,
buf->alloc - buf->len - 1);
if (n_read < 0)
{
if (errno == EAGAIN)
break;
if (soft_assert (errno == EINTR))
continue;
if (!plugin->is_zombie)
{
print_error ("failure on reading from plugin `%s',"
" therefore I'm unloading it", plugin->name);
plugin_zombify (plugin);
}
return;
}
// EOF; hopefully it will die soon (maybe it already has)
if (n_read == 0)
break;
buf->str[buf->len += n_read] = '\0';
if (buf->len >= (1 << 20))
{
// XXX: this isn't really the best flood prevention mechanism,
// but it wasn't even supposed to be one.
if (plugin->is_zombie)
{
print_error ("a zombie of plugin `%s' is trying to flood us,"
" therefore I'm killing it", plugin->name);
kill (plugin->pid, SIGKILL);
}
else
{
print_error ("plugin `%s' seems to spew out data frantically,"
" therefore I'm unloading it", plugin->name);
plugin_zombify (plugin);
}
return;
}
}
// Hold it in the buffer while we're disconnected
struct bot_context *ctx = plugin->ctx;
if (ctx->irc_fd != -1 && ctx->irc_ready)
irc_process_buffer (buf, plugin_process_message, plugin);
}
static bool
is_valid_plugin_name (const char *name)
{
if (!*name)
return false;
for (const char *p = name; *p; p++)
if (!isgraph (*p) || *p == '/')
return false;
return true;
}
static bool
plugin_load (struct bot_context *ctx, const char *name, struct error **e)
{
const char *plugin_dir = str_map_find (&ctx->config, "plugin_dir");
if (!plugin_dir)
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_LOADING_FAILED,
"plugin directory not set");
return false;
}
if (!is_valid_plugin_name (name))
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_LOADING_FAILED,
"invalid plugin name");
return false;
}
if (str_map_find (&ctx->plugins_by_name, name))
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_ALREADY_LOADED,
"the plugin has already been loaded");
return false;
}
int stdin_pipe[2];
if (pipe (stdin_pipe) == -1)
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_LOADING_FAILED, "%s: %s: %s",
"failed to load the plugin", "pipe", strerror (errno));
goto fail_1;
}
int stdout_pipe[2];
if (pipe (stdout_pipe) == -1)
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_LOADING_FAILED, "%s: %s: %s",
"failed to load the plugin", "pipe", strerror (errno));
goto fail_2;
}
set_cloexec (stdin_pipe[1]);
set_cloexec (stdout_pipe[0]);
pid_t pid = fork ();
if (pid == -1)
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_LOADING_FAILED, "%s: %s: %s",
"failed to load the plugin", "fork", strerror (errno));
goto fail_3;
}
if (pid == 0)
{
// Redirect the child's stdin and stdout to the pipes
hard_assert (dup2 (stdin_pipe[0], STDIN_FILENO) != -1);
hard_assert (dup2 (stdout_pipe[1], STDOUT_FILENO) != -1);
xclose (stdin_pipe[0]);
xclose (stdout_pipe[1]);
struct str pathname;
str_init (&pathname);
str_append (&pathname, plugin_dir);
str_append_c (&pathname, '/');
str_append (&pathname, name);
// Restore some of the signal handling
signal (SIGPIPE, SIG_DFL);
char *const argv[] = { pathname.str, NULL };
execve (argv[0], argv, environ);
// We will collect the failure later via SIGCHLD
print_fatal ("%s: %s: %s",
"failed to load the plugin", "exec", strerror (errno));
_exit (EXIT_FAILURE);
}
xclose (stdin_pipe[0]);
xclose (stdout_pipe[1]);
set_blocking (stdout_pipe[0], false);
set_blocking (stdin_pipe[1], false);
struct plugin_data *plugin = xmalloc (sizeof *plugin);
plugin_data_init (plugin);
plugin->ctx = ctx;
plugin->pid = pid;
plugin->name = xstrdup (name);
plugin->read_fd = stdout_pipe[0];
plugin->write_fd = stdin_pipe[1];
LIST_PREPEND (ctx->plugins, plugin);
str_map_set (&ctx->plugins_by_name, name, plugin);
poller_set (&ctx->poller, stdout_pipe[0], POLLIN,
(poller_dispatcher_func) on_plugin_readable, plugin);
return true;
fail_3:
xclose (stdout_pipe[0]);
xclose (stdout_pipe[1]);
fail_2:
xclose (stdin_pipe[0]);
xclose (stdin_pipe[1]);
fail_1:
return false;
}
static bool
plugin_unload (struct bot_context *ctx, const char *name, struct error **e)
{
struct plugin_data *plugin = str_map_find (&ctx->plugins_by_name, name);
if (!plugin)
{
error_set (e, PLUGIN_ERROR, PLUGIN_ERROR_NOT_LOADED,
"no such plugin is loaded");
return false;
}
plugin_zombify (plugin);
// TODO: add a `kill zombies' command to forcefully get rid of processes
// that do not understand the request.
// TODO: set a timeout before we go for a kill automatically (and if this
// was a reload request, try to bring the plugin back up)
return true;
}
static void
plugin_load_all_from_config (struct bot_context *ctx)
{
const char *plugin_list = str_map_find (&ctx->config, "plugins");
if (!plugin_list)
return;
struct str_vector plugins;
str_vector_init (&plugins);
split_str_ignore_empty (plugin_list, ',', &plugins);
for (size_t i = 0; i < plugins.len; i++)
{
char *name = strip_str_in_place (plugins.vector[i], " ");
struct error *e = NULL;
if (!plugin_load (ctx, name, &e))
{
print_error ("plugin `%s' failed to load: %s", name, e->message);
error_free (e);
}
}
str_vector_free (&plugins);
}
// --- Main program ------------------------------------------------------------
static bool
parse_bot_command (const char *s, const char *command, const char **following)
{
size_t command_len = strlen (command);
if (strncasecmp (s, command, command_len))
return false;
s += command_len;
// Expect a word boundary, so that we don't respond to invalid things
if (isalnum (*s))
return false;
// Ignore any initial spaces; the rest is the command's argument
while (isblank (*s))
s++;
*following = s;
return true;
}
static void
split_bot_command_argument_list (const char *arguments, struct str_vector *out)
{
split_str_ignore_empty (arguments, ',', out);
for (size_t i = 0; i < out->len; )
{
if (!*strip_str_in_place (out->vector[i], " \t"))
str_vector_remove (out, i);
else
i++;
}
}
static bool
is_private_message (const struct irc_message *msg)
{
hard_assert (msg->params.len);
return !strchr ("#&+!", *msg->params.vector[0]);
}
static bool
is_sent_by_admin (struct bot_context *ctx, const struct irc_message *msg)
{
const char *admin = str_map_find (&ctx->config, "admin");
// No administrator set -> everyone is an administrator
if (!admin)
return true;
// TODO: precompile the regex
struct error *e = NULL;
if (regex_match (admin, msg->prefix, NULL))
return true;
if (e)
{
print_error ("%s: %s", "invalid admin mask", e->message);
error_free (e);
return true;
}
return false;
}
static void respond_to_user (struct bot_context *ctx, const struct
irc_message *msg, const char *format, ...) ATTRIBUTE_PRINTF (3, 4);
static void
respond_to_user (struct bot_context *ctx, const struct irc_message *msg,
const char *format, ...)
{
if (!soft_assert (msg->prefix && msg->params.len))
return;
char nick[strcspn (msg->prefix, "!") + 1];
strncpy (nick, msg->prefix, sizeof nick - 1);
nick[sizeof nick - 1] = '\0';
struct str text;
va_list ap;
str_init (&text);
va_start (ap, format);
str_append_vprintf (&text, format, ap);
va_end (ap);
if (is_private_message (msg))
irc_send (ctx, "PRIVMSG %s :%s", nick, text.str);
else
irc_send (ctx, "PRIVMSG %s :%s: %s",
msg->params.vector[0], nick, text.str);
str_free (&text);
}
static void
process_plugin_load (struct bot_context *ctx,
const struct irc_message *msg, const char *name)
{
struct error *e = NULL;
if (plugin_load (ctx, name, &e))
respond_to_user (ctx, msg, "plugin `%s' queued for loading", name);
else
{
respond_to_user (ctx, msg, "plugin `%s' could not be loaded: %s",
name, e->message);
error_free (e);
}
}
static void
process_plugin_unload (struct bot_context *ctx,
const struct irc_message *msg, const char *name)
{
struct error *e = NULL;
if (plugin_unload (ctx, name, &e))
respond_to_user (ctx, msg, "plugin `%s' unloaded", name);
else
{
respond_to_user (ctx, msg, "plugin `%s' could not be unloaded: %s",
name, e->message);
error_free (e);
}
}
static void
process_plugin_reload (struct bot_context *ctx,
const struct irc_message *msg, const char *name)
{
// So far the only error that can occur is that the plugin hasn't been
// loaded, which in this case doesn't really matter.
plugin_unload (ctx, name, NULL);
process_plugin_load (ctx, msg, name);
}
static void
process_privmsg (struct bot_context *ctx, const struct irc_message *msg)
{
if (!is_sent_by_admin (ctx, msg))
return;
if (msg->params.len < 2)
return;
const char *prefix = str_map_find (&ctx->config, "prefix");
hard_assert (prefix != NULL); // We have a default value for this
// For us to recognize the command, it has to start with the prefix,
// with the exception of PM's sent directly to us.
const char *text = msg->params.vector[1];
if (!strncmp (text, prefix, strlen (prefix)))
text += strlen (prefix);
else if (!is_private_message (msg))
return;
const char *following;
struct str_vector list;
str_vector_init (&list);
if (parse_bot_command (text, "quote", &following))
// This seems to replace tons of random stupid commands
irc_send (ctx, "%s", following);
else if (parse_bot_command (text, "quit", &following))
{
// We actually need this command (instead of just `quote') because we
// could try to reconnect to the server automatically otherwise.
if (*following)
irc_send (ctx, "QUIT :%s", following);
else
irc_send (ctx, "QUIT");
initiate_quit (ctx);
}
else if (parse_bot_command (text, "status", &following))
{
struct str report;
str_init (&report);
const char *reason = getenv (g_startup_reason_str);
if (!reason)
reason = "launched normally";
str_append_printf (&report, "\x02startup reason:\x0f %s, ", reason);
str_append (&report, "\x02plugins:\x0f ");
size_t zombies = 0;
for (struct plugin_data *plugin = ctx->plugins;
plugin; plugin = plugin->next)
{
if (plugin->is_zombie)
zombies++;
else
str_append_printf (&report, "%s, ", plugin->name);
}
if (!ctx->plugins)
str_append (&report, "\x02none\x0f, ");
str_append_printf (&report, "\x02zombies:\x0f %zu", zombies);
respond_to_user (ctx, msg, "%s", report.str);
str_free (&report);
}
else if (parse_bot_command (text, "load", &following))
{
split_bot_command_argument_list (following, &list);
for (size_t i = 0; i < list.len; i++)
process_plugin_load (ctx, msg, list.vector[i]);
}
else if (parse_bot_command (text, "reload", &following))
{
split_bot_command_argument_list (following, &list);
for (size_t i = 0; i < list.len; i++)
process_plugin_reload (ctx, msg, list.vector[i]);
}
else if (parse_bot_command (text, "unload", &following))
{
split_bot_command_argument_list (following, &list);
for (size_t i = 0; i < list.len; i++)
process_plugin_unload (ctx, msg, list.vector[i]);
}
str_vector_free (&list);
}
static void
irc_process_message (const struct irc_message *msg,
const char *raw, void *user_data)
{
struct bot_context *ctx = user_data;
if (g_debug_mode)
fprintf (stderr, "[%s] ==> \"%s\"\n", "IRC", raw);
// This should be as minimal as possible, I don't want to have the whole bot
// written in C, especially when I have this overengineered plugin system.
// Therefore the very basic functionality only.
//
// I should probably even rip out the autojoin...
// First forward the message to all the plugins
for (struct plugin_data *plugin = ctx->plugins;
plugin; plugin = plugin->next)
{
if (plugin->is_zombie)
continue;
if (plugin->initialized)
plugin_send (plugin, "%s", raw);
else
// TODO: make sure that this buffer doesn't get too large either
str_append_printf (&plugin->queued_output, "%s\r\n", raw);
}
if (!strcasecmp (msg->command, "PING"))
{
if (msg->params.len)
irc_send (ctx, "PONG :%s", msg->params.vector[0]);
else
irc_send (ctx, "PONG");
}
else if (!ctx->irc_ready && (!strcasecmp (msg->command, "MODE")
|| !strcasecmp (msg->command, "376") // RPL_ENDOFMOTD
|| !strcasecmp (msg->command, "422"))) // ERR_NOMOTD
{
print_status ("successfully connected");
ctx->irc_ready = true;
const char *autojoin = str_map_find (&ctx->config, "autojoin");
if (autojoin)
irc_send (ctx, "JOIN :%s", autojoin);
}
else if (!strcasecmp (msg->command, "PRIVMSG"))
process_privmsg (ctx, msg);
}
enum irc_read_result
{
IRC_READ_OK, ///< Some data were read successfully
IRC_READ_EOF, ///< The server has closed connection
IRC_READ_AGAIN, ///< No more data at the moment
IRC_READ_ERROR ///< General connection failure
};
static enum irc_read_result
irc_fill_read_buffer_ssl (struct bot_context *ctx, struct str *buf)
{
int n_read;
start:
n_read = SSL_read (ctx->ssl, buf->str + buf->len,
buf->alloc - buf->len - 1 /* null byte */);
const char *error_info = NULL;
switch (SSL_get_error (ctx->ssl, n_read))
{
case SSL_ERROR_NONE:
buf->str[buf->len += n_read] = '\0';
return IRC_READ_AGAIN;
case SSL_ERROR_ZERO_RETURN:
return IRC_READ_EOF;
case SSL_ERROR_WANT_READ:
return IRC_READ_AGAIN;
case SSL_ERROR_WANT_WRITE:
{
// Let it finish the handshake as we don't poll for writability;
// any errors are to be collected by SSL_read() in the next iteration
struct pollfd pfd = { .fd = ctx->irc_fd, .events = POLLOUT };
soft_assert (poll (&pfd, 1, 0) > 0);
goto start;
}
case SSL_ERROR_SYSCALL:
{
int err;
if ((err = ERR_get_error ()))
error_info = ERR_error_string (err, NULL);
else if (n_read == 0)
return IRC_READ_EOF;
else
{
if (errno == EINTR)
goto start;
error_info = strerror (errno);
}
break;
}
case SSL_ERROR_SSL:
default:
error_info = ERR_error_string (ERR_get_error (), NULL);
}
print_debug ("%s: %s: %s", __func__, "SSL_read", error_info);
return IRC_READ_ERROR;
}
static enum irc_read_result
irc_fill_read_buffer (struct bot_context *ctx, struct str *buf)
{
ssize_t n_read;
start:
n_read = recv (ctx->irc_fd, buf->str + buf->len,
buf->alloc - buf->len - 1 /* null byte */, 0);
if (n_read > 0)
{
buf->str[buf->len += n_read] = '\0';
return IRC_READ_OK;
}
if (n_read == 0)
return IRC_READ_EOF;
if (errno == EAGAIN)
return IRC_READ_AGAIN;
if (errno == EINTR)
goto start;
print_debug ("%s: %s: %s", __func__, "recv", strerror (errno));
return IRC_READ_ERROR;
}
static bool irc_connect (struct bot_context *ctx, struct error **e);
static void
irc_try_reconnect (struct bot_context *ctx)
{
if (!soft_assert (ctx->irc_fd == -1))
return;
const char *reconnect_str = str_map_find (&ctx->config, "reconnect");
hard_assert (reconnect_str != NULL); // We have a default value for this
bool reconnect;
if (!set_boolean_if_valid (&reconnect, reconnect_str))
{
print_fatal ("invalid configuration value for `%s'", "recover");
try_finish_quit (ctx);
return;
}
if (!reconnect)
return;
const char *delay_str = str_map_find (&ctx->config, "reconnect_delay");
hard_assert (delay_str != NULL); // We have a default value for this
char *end_ptr;
errno = 0;
long delay = strtol (delay_str, &end_ptr, 10);
if (errno != 0 || end_ptr == delay_str || *end_ptr)
{
print_error ("invalid configuration value for `%s'",
"reconnect_delay");
delay = 0;
}
while (true)
{
// TODO: this would be better suited by a timeout event;
// remember to update try_finish_quit() etc. to reflect this
print_status ("trying to reconnect in %ld seconds...", delay);
sleep (delay);
struct error *e = NULL;
if (irc_connect (ctx, &e))
break;
print_error ("%s", e->message);
error_free (e);
}
// TODO: inform plugins about the new connection
}
static void
on_irc_disconnected (struct bot_context *ctx)
{
// Get rid of the dead socket etc.
if (ctx->ssl)
{
SSL_free (ctx->ssl);
ctx->ssl = NULL;
SSL_CTX_free (ctx->ssl_ctx);
ctx->ssl_ctx = NULL;
}
ssize_t i = poller_find_by_fd (&ctx->poller, ctx->irc_fd);
if (i != -1)
poller_remove_at_index (&ctx->poller, i);
xclose (ctx->irc_fd);
ctx->irc_fd = -1;
// TODO: inform plugins about the disconnect event
if (ctx->quitting)
{
// Unload all plugins
// TODO: wait for a few seconds and then send SIGKILL to all plugins
for (struct plugin_data *plugin = ctx->plugins;
plugin; plugin = plugin->next)
plugin_zombify (plugin);
try_finish_quit (ctx);
return;
}
irc_try_reconnect (ctx);
}
static void
on_irc_readable (const struct pollfd *fd, struct bot_context *ctx)
{
if (fd->revents != POLLIN)
print_debug ("poller fd %d: revents: %d", fd->fd, fd->revents);
(void) set_blocking (ctx->irc_fd, false);
struct str *buf = &ctx->read_buffer;
enum irc_read_result (*fill_buffer)(struct bot_context *, struct str *)
= ctx->ssl
? irc_fill_read_buffer_ssl
: irc_fill_read_buffer;
bool disconnected = false;
while (true)
{
str_ensure_space (buf, 512);
switch (fill_buffer (ctx, buf))
{
case IRC_READ_AGAIN:
goto end;
case IRC_READ_ERROR:
print_error ("reading from the IRC server failed");
disconnected = true;
goto end;
case IRC_READ_EOF:
print_status ("the IRC server closed the connection");
disconnected = true;
goto end;
case IRC_READ_OK:
break;
}
if (buf->len >= (1 << 20))
{
print_fatal ("the IRC server seems to spew out data frantically");
irc_shutdown (ctx);
goto end;
}
}
end:
(void) set_blocking (ctx->irc_fd, true);
irc_process_buffer (buf, irc_process_message, ctx);
if (disconnected)
on_irc_disconnected (ctx);
}
static bool
irc_connect (struct bot_context *ctx, struct error **e)
{
const char *irc_host = str_map_find (&ctx->config, "irc_host");
const char *irc_port = str_map_find (&ctx->config, "irc_port");
const char *ssl_use_str = str_map_find (&ctx->config, "ssl_use");
const char *nickname = str_map_find (&ctx->config, "nickname");
const char *username = str_map_find (&ctx->config, "username");
const char *fullname = str_map_find (&ctx->config, "fullname");
// We have a default value for these
hard_assert (irc_port && ssl_use_str);
hard_assert (nickname && username && fullname);
// TODO: again, get rid of `struct error' in here. The question is: how
// do we tell our caller that he should not try to reconnect?
if (!irc_host)
{
error_set (e, CONNECT_ERROR, CONNECT_ERROR_INVALID_CONFIGURATION,
"no hostname specified in configuration");
return false;
}
bool use_ssl;
if (!set_boolean_if_valid (&use_ssl, ssl_use_str))
{
error_set (e, CONNECT_ERROR, CONNECT_ERROR_INVALID_CONFIGURATION,
"invalid configuration value for `%s'", "use_ssl");
return false;
}
if (!irc_establish_connection (ctx, irc_host, irc_port, use_ssl, e))
return false;
// TODO: set a timeout on the socket, something like 30 minutes, then we
// should ideally send a PING... or just forcefully reconnect.
//
// TODO: in exec try: 1/ set blocking, 2/ setsockopt() SO_LINGER,
// (struct linger) { .l_onoff = true; .l_linger = 1 /* 1s should do */; }
// 3/ /* O_CLOEXEC */ But only if the QUIT message proves unreliable.
poller_set (&ctx->poller, ctx->irc_fd, POLLIN,
(poller_dispatcher_func) on_irc_readable, ctx);
// TODO: probably check for errors from these calls as well
irc_send (ctx, "NICK %s", nickname);
irc_send (ctx, "USER %s 8 * :%s", username, fullname);
return true;
}
static void
on_signal_pipe_readable (const struct pollfd *fd, struct bot_context *ctx)
{
char *dummy;
(void) read (fd->fd, &dummy, 1);
// XXX: do we need to check if we have a connection?
if (g_termination_requested && !ctx->quitting)
{
irc_send (ctx, "QUIT :Terminated by signal");
initiate_quit (ctx);
}
// Reap all dead children (since the pipe may overflow, we ask waitpid()
// to return all the zombies it knows about).
while (true)
{
int status;
pid_t zombie = waitpid (-1, &status, WNOHANG);
if (zombie == -1)
{
// No children to wait on
if (errno == ECHILD)
break;
hard_assert (errno == EINTR);
continue;
}
if (zombie == 0)
break;
struct plugin_data *plugin = plugin_find_by_pid (ctx, zombie);
// Something has died but we don't recognize it (re-exec?)
if (!soft_assert (plugin != NULL))
continue;
// TODO: callbacks on children death, so that we may tell the user
// "plugin `name' died like a dirty jewish pig"; use `status'
if (!plugin->is_zombie && WIFSIGNALED (status))
{
char *notes = "";
#ifdef WCOREDUMP
if (WCOREDUMP (status))
notes = " (core dumped)";
#endif
print_warning ("Plugin `%s' died from signal %d%s",
plugin->name, WTERMSIG (status), notes);
}
// Let's go through the zombie state to simplify things a bit
// TODO: might not be a completely bad idea to restart the plugin
plugin_zombify (plugin);
plugin->pid = -1;
ssize_t poller_idx = poller_find_by_fd (&ctx->poller, plugin->read_fd);
if (poller_idx != -1)
poller_remove_at_index (&ctx->poller, poller_idx);
xclose (plugin->read_fd);
plugin->read_fd = -1;
LIST_UNLINK (ctx->plugins, plugin);
plugin_data_free (plugin);
free (plugin);
// Living child processes block us from quitting
try_finish_quit (ctx);
}
}
static void
write_default_configuration (const char *filename)
{
struct str path, base;
int status = EXIT_SUCCESS;
str_init (&path);
str_init (&base);
if (filename)
{
char *tmp = xstrdup (filename);
str_append (&path, dirname (tmp));
strcpy (tmp, filename);
str_append (&base, basename (tmp));
free (tmp);
}
else
{
get_xdg_home_dir (&path, "XDG_CONFIG_HOME", ".config");
str_append (&path, "/" PROGRAM_NAME);
str_append (&base, PROGRAM_NAME ".conf");
}
struct error *e = NULL;
if (!mkdir_with_parents (path.str, &e))
{
print_fatal ("%s", e->message);
status = EXIT_FAILURE;
goto out;
}
str_append_c (&path, '/');
str_append_str (&path, &base);
FILE *fp = fopen (path.str, "w");
if (!fp)
{
print_fatal ("could not open `%s' for writing: %s",
path.str, strerror (errno));
status = EXIT_FAILURE;
goto out;
}
errno = 0;
for (size_t i = 0; i < N_ELEMENTS (g_config_table); i++)
{
const struct config_item *item = g_config_table + i;
fprintf (fp, "# %s\n", item->description);
if (item->default_value)
fprintf (fp, "%s=%s\n", item->key, item->default_value);
else
fprintf (fp, "#%s=\n", item->key);
}
fclose (fp);
if (errno)
{
print_fatal ("writing to `%s' failed: %s", path.str, strerror (errno));
status = EXIT_FAILURE;
goto out;
}
print_status ("configuration written to `%s'", path.str);
out:
str_free (&path);
str_free (&base);
exit (status);
}
static void
print_usage (const char *program_name)
{
fprintf (stderr,
"Usage: %s [OPTION]...\n"
"Experimental IRC bot.\n"
"\n"
" -d, --debug run in debug mode\n"
" -h, --help display this help and exit\n"
" -V, --version output version information and exit\n"
" --write-default-cfg [filename]\n"
" write a default configuration file and exit\n",
program_name);
}
int
main (int argc, char *argv[])
{
const char *invocation_name = argv[0];
str_vector_init (&g_original_argv);
str_vector_add_vector (&g_original_argv, argv);
static struct option opts[] =
{
{ "debug", no_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "version", no_argument, NULL, 'V' },
{ "write-default-cfg", optional_argument, NULL, 'w' },
{ NULL, 0, NULL, 0 }
};
while (1)
{
int c, opt_index;
c = getopt_long (argc, argv, "dhV", opts, &opt_index);
if (c == -1)
break;
switch (c)
{
case 'd':
g_debug_mode = true;
break;
case 'h':
print_usage (invocation_name);
exit (EXIT_SUCCESS);
case 'V':
printf (PROGRAM_NAME " " PROGRAM_VERSION "\n");
exit (EXIT_SUCCESS);
case 'w':
write_default_configuration (optarg);
abort ();
default:
print_fatal ("error in options");
exit (EXIT_FAILURE);
}
}
print_status (PROGRAM_NAME " " PROGRAM_VERSION " starting");
setup_signal_handlers ();
SSL_library_init ();
atexit (EVP_cleanup);
SSL_load_error_strings ();
atexit (ERR_free_strings);
struct bot_context ctx;
bot_context_init (&ctx);
struct error *e = NULL;
if (!read_config_file (&ctx.config, &e))
{
print_fatal ("error loading configuration: %s", e->message);
error_free (e);
exit (EXIT_FAILURE);
}
setup_recovery_handler (&ctx);
poller_set (&ctx.poller, g_signal_pipe[0], POLLIN,
(poller_dispatcher_func) on_signal_pipe_readable, &ctx);
plugin_load_all_from_config (&ctx);
if (!irc_connect (&ctx, &e))
{
print_error ("%s", e->message);
error_free (e);
exit (EXIT_FAILURE);
}
// TODO: clean re-exec support; to save the state I can either use argv,
// argp, or I can create a temporary file, unlink it and use the FD
// (mkstemp() on a `struct str' constructed from XDG_RUNTIME_DIR, TMPDIR
// or /tmp as a last resort + PROGRAM_NAME + ".XXXXXX" -> unlink();
// remember to use O_CREAT | O_EXCL). The state needs to be versioned.
// Unfortunately I cannot de/serialize SSL state.
ctx.polling = true;
while (ctx.polling)
poller_run (&ctx.poller);
bot_context_free (&ctx);
str_vector_free (&g_original_argv);
return EXIT_SUCCESS;
}