/*
* ponymap.c: the experimental network scanner
*
* Copyright (c) 2014, Přemysl Janouch
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#define LIBERTY_WANT_SSL
#define LIBERTY_WANT_POLLER
#include "config.h"
#include "liberty/liberty.c"
#include "plugin-api.h"
#include
#include
#include
#include
#include
#include
#include
#include
// --- Configuration (application-specific) ------------------------------------
#define DEFAULT_CONNECT_TIMEOUT 10
#define DEFAULT_SCAN_TIMEOUT 10
static struct config_item g_config_table[] =
{
{ "plugin_dir", PLUGIN_DIR, "Where to search for plugins" },
{ NULL, NULL, NULL }
};
// --- Fancy terminal output ---------------------------------------------------
static struct
{
bool initialized; ///< Terminal is available
bool stdout_is_tty; ///< `stdout' is a terminal
bool stderr_is_tty; ///< `stderr' is a terminal
char *color_set[8]; ///< Codes to set the foreground colour
}
g_terminal;
static void
init_terminal (void)
{
int tty_fd = -1;
if ((g_terminal.stderr_is_tty = isatty (STDERR_FILENO)))
tty_fd = STDERR_FILENO;
if ((g_terminal.stdout_is_tty = isatty (STDOUT_FILENO)))
tty_fd = STDOUT_FILENO;
int err;
if (tty_fd == -1 || setupterm (NULL, tty_fd, &err) == ERR)
return;
// Make sure all terminal features used by us are supported
if (!set_a_foreground || !orig_pair
|| !enter_bold_mode || !exit_attribute_mode
|| !carriage_return || !cursor_left || !clr_eol)
{
del_curterm (cur_term);
return;
}
for (size_t i = 0; i < N_ELEMENTS (g_terminal.color_set); i++)
g_terminal.color_set[i] = xstrdup (tparm (set_a_foreground,
i, 0, 0, 0, 0, 0, 0, 0, 0));
g_terminal.initialized = true;
}
static void
free_terminal (void)
{
if (!g_terminal.initialized)
return;
for (size_t i = 0; i < N_ELEMENTS (g_terminal.color_set); i++)
free (g_terminal.color_set[i]);
del_curterm (cur_term);
}
typedef int (*terminal_printer_fn) (int);
static int
putchar_stderr (int c)
{
return fputc (c, stderr);
}
static terminal_printer_fn
get_terminal_printer (FILE *stream)
{
if (!g_terminal.initialized)
return NULL;
if (stream == stdout && g_terminal.stdout_is_tty)
return putchar;
if (stream == stderr && g_terminal.stderr_is_tty)
return putchar_stderr;
return NULL;
}
static void
print_color (FILE *stream, int color, const char *s)
{
terminal_printer_fn printer = get_terminal_printer (stream);
if (printer && color != -1)
tputs (g_terminal.color_set[color], 1, printer);
fputs (s, stream);
if (printer && color != -1)
tputs (orig_pair, 1, printer);
}
static void
print_bold (FILE *stream, const char *s)
{
terminal_printer_fn printer = get_terminal_printer (stream);
if (printer)
tputs (enter_bold_mode, 1, printer);
fputs (s, stream);
if (printer)
tputs (exit_attribute_mode, 1, printer);
}
// --- Application data --------------------------------------------------------
// The scan is a cartesian product of: [IP ranges] -> [ports] -> [services]
struct port_range
{
LIST_HEADER (struct port_range)
uint16_t start; ///< The beginning of the range
uint16_t end; ///< The end of the range
};
static void
port_range_delete (struct port_range *self)
{
free (self);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct ip_range
{
LIST_HEADER (struct ip_range)
uint32_t start; ///< The beginning of the range
uint32_t end; ///< The end of the range
char *original_name; ///< The name the user typed in
uint32_t original_address; ///< The address of `original_name'
};
static void
ip_range_delete (struct ip_range *self)
{
free (self->original_name);
free (self);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct target
{
LIST_HEADER (struct target)
size_t ref_count; ///< Reference count
struct app_context *ctx; ///< Application context
uint32_t ip; ///< IP address
char ip_string[INET_ADDRSTRLEN]; ///< IP address as a string
char *hostname; ///< Hostname
/// All units that have ended, either successfully finding a service, or
/// just successful in establishing a connection.
/// These don't hold a reference to us as they're considered a part of
/// this object; we hold a reference to them.
struct unit *results;
/// All currently running units for this target, holding a reference to us.
/// They remove themselves from this list upon terminating. The purpose of
/// this list is making it possible to abort them forcefully.
struct unit *running_units;
};
static struct target *target_ref (struct target *self);
static void target_unref (struct target *self);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct unit
{
LIST_HEADER (struct unit)
size_t ref_count; ///< Reference count
struct target *target; ///< Target context
struct service *service; ///< Service
void *service_data; ///< User data for service
struct transport *transport; ///< Transport methods
void *transport_data; ///< User data for transport
int socket_fd; ///< The TCP socket
uint16_t port; ///< The scanned port
struct str read_buffer; ///< Unprocessed input
struct str write_buffer; ///< Output yet to be sent out
struct poller_timer timeout_event; ///< Timeout event
struct poller_fd fd_event; ///< FD event
struct str_vector info; ///< Info resulting from the scan
bool scan_started; ///< Whether the scan has been started
bool abortion_requested; ///< Abortion requested by service
bool aborted; ///< Scan has been aborted
bool success; ///< Service has been found
};
static struct unit *unit_ref (struct unit *self);
static void unit_unref (struct unit *self);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
enum transport_io_result
{
TRANSPORT_IO_OK = 0, ///< Completed successfully
TRANSPORT_IO_EOF, ///< Connection shut down by peer
TRANSPORT_IO_ERROR ///< Connection error
};
// The only real purpose of this is to abstract away TLS/SSL
struct transport
{
LIST_HEADER (struct transport)
const char *name; ///< Name of the transport
/// Initialize the transport
bool (*init) (struct unit *u);
/// Destroy the user data pointer
void (*cleanup) (struct unit *u);
/// The underlying socket may have become readable, update `read_buffer';
/// return false if the connection has failed.
enum transport_io_result (*on_readable) (struct unit *u);
/// The underlying socket may have become writeable, flush `write_buffer';
/// return false if the connection has failed.
enum transport_io_result (*on_writeable) (struct unit *u);
/// Return event mask to use in the poller
int (*get_poll_events) (struct unit *u);
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#define INDICATOR_INTERVAL 500
struct indicator
{
struct poller_timer timer; ///< The animation timer
const char *frames; ///< All the characters
size_t frames_len; ///< The number of characters
char *status; ///< The status text
unsigned position; ///< The current animation character
bool shown; ///< The indicator is shown on screen
};
static void indicator_init (struct indicator *self, struct poller *poller);
static void
indicator_free (struct indicator *self)
{
free (self->status);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct generator
{
struct target *current_target; ///< Current target
struct ip_range *ip_range_iter; ///< Current IP range
struct port_range *port_range_iter; ///< Current port range
uint32_t ip_iter; ///< IP iterator within the range
uint16_t port_iter; ///< Port iterator within the range
struct str_map_iter svc_iter; ///< Service iterator
struct service *svc; ///< Current service iterator value
struct transport *transport_iter; ///< Transport iterator
};
static bool generator_step (struct app_context *ctx);
static void on_generator_step_requested (struct app_context *ctx);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct app_context
{
struct str_map config; ///< User configuration
unsigned connect_timeout; ///< Timeout for connect() in sec.
unsigned scan_timeout; ///< Timeout for service scans in sec.
json_t *json_results; ///< The results as a JSON value
const char *json_filename; ///< The filename to write JSON to
SSL_CTX *ssl_ctx; ///< OpenSSL context
struct str_map svc_list; ///< List of services to scan for
struct port_range *port_list; ///< List of ports to scan on
struct ip_range *ip_list; ///< List of IP's to scan
struct str_map services; ///< All registered services
struct transport *transports; ///< All available transports
struct generator generator; ///< Unit generator
struct indicator indicator; ///< Status indicator
size_t stats_hosts; ///< How many hosts we've scanned
size_t stats_results; ///< How many services we've found
// We need this list ordered from the oldest running target,
// therefore we track the tail to allow O(1) appends.
struct target *running_targets; ///< List of currently scanned targets
struct target *running_tail; ///< The tail link of `running_targets'
struct poller poller; ///< Manages polled descriptors
struct poller_idle step_event; ///< Idle event to make more units
bool quitting; ///< User requested quitting
bool polling; ///< The event loop is running
};
static void
app_context_init (struct app_context *self)
{
memset (self, 0, sizeof *self);
str_map_init (&self->config);
self->config.free = free;
load_config_defaults (&self->config, g_config_table);
self->connect_timeout = DEFAULT_CONNECT_TIMEOUT;
self->scan_timeout = DEFAULT_SCAN_TIMEOUT;
str_map_init (&self->svc_list);
str_map_init (&self->services);
indicator_init (&self->indicator, &self->poller);
// Ignoring the generator so far
poller_init (&self->poller);
self->quitting = false;
self->polling = false;
poller_idle_init (&self->step_event, &self->poller);
self->step_event.dispatcher = (poller_idle_fn) on_generator_step_requested;
self->step_event.user_data = self;
}
static void
app_context_free (struct app_context *self)
{
str_map_free (&self->config);
str_map_free (&self->svc_list);
str_map_free (&self->services);
indicator_free (&self->indicator);
poller_free (&self->poller);
for (struct ip_range *iter = self->ip_list; iter; )
{
struct ip_range *next = iter->next;
ip_range_delete (iter);
iter = next;
}
for (struct port_range *iter = self->port_list; iter; )
{
struct port_range *next = iter->next;
port_range_delete (iter);
iter = next;
}
if (self->ssl_ctx)
SSL_CTX_free (self->ssl_ctx);
if (self->json_results)
json_decref (self->json_results);
}
// --- Progress indicator ------------------------------------------------------
// TODO: make it so that the indicator is hidden while printing messages to
// the same terminal -> wrapper for log_message_stdio().
static void
indicator_set_timer (struct indicator *self)
{
poller_timer_set (&self->timer, INDICATOR_INTERVAL);
}
static void
on_indicator_tick (struct indicator *self)
{
if (!self->shown)
return;
if (++self->position >= self->frames_len)
self->position = 0;
tputs (cursor_left, 1, putchar);
putchar (self->frames[self->position]);
fflush (stdout);
indicator_set_timer (self);
}
static void
indicator_init (struct indicator *self, struct poller *poller)
{
poller_timer_init (&self->timer, poller);
self->timer.dispatcher = (poller_timer_fn) on_indicator_tick;
self->timer.user_data = self;
static const char frames[] = "-\\|/";
self->position = 0;
self->frames = frames;
self->frames_len = sizeof frames - 1;
self->status = NULL;
self->shown = false;
}
static void
indicator_show (struct indicator *self)
{
if (self->shown || !g_terminal.initialized || !g_terminal.stdout_is_tty)
return;
tputs (carriage_return, 1, putchar);
printf ("%s... %c", self->status, self->frames[self->position]);
tputs (clr_eol, 1, putchar);
fflush (stdout);
self->shown = true;
indicator_set_timer (self);
}
static void
indicator_hide (struct indicator *self)
{
if (!self->shown)
return;
tputs (carriage_return, 1, putchar);
tputs (clr_eol, 1, putchar);
fflush (stdout);
self->shown = false;
poller_timer_reset (&self->timer);
}
static void
indicator_set_status (struct indicator *self, char *status)
{
bool refresh = self->shown;
indicator_hide (self);
free (self->status);
self->status = status;
if (refresh)
indicator_show (self);
}
// --- Scan units --------------------------------------------------------------
static void on_unit_ready (const struct pollfd *pfd, struct unit *u);
static struct unit *
unit_ref (struct unit *self)
{
self->ref_count++;
return self;
}
static void
unit_unref (struct unit *self)
{
if (!self || --self->ref_count)
return;
target_unref (self->target);
str_free (&self->read_buffer);
str_free (&self->write_buffer);
str_vector_free (&self->info);
free (self);
}
static void
unit_abort (struct unit *u)
{
if (u->aborted)
return;
u->aborted = true;
if (u->scan_started)
{
if (u->service->on_aborted)
u->service->on_aborted (u->service_data);
u->service->scan_free (u->service_data);
u->transport->cleanup (u);
}
poller_timer_reset (&u->timeout_event);
// This way we avoid a syscall with epoll
xclose (u->socket_fd);
u->fd_event.closed = true;
poller_fd_reset (&u->fd_event);
u->transport_data = NULL;
u->service_data = NULL;
u->socket_fd = -1;
// We're no longer running
LIST_UNLINK (u->target->running_units, u);
// We might have made it possible to launch new units; we cannot run
// the generator right now, though, as we could spin in a long loop
poller_idle_set (&u->target->ctx->step_event);
// If the scan has been started, we have successfully connected at least
if (u->scan_started || u->success)
{
struct target *target = u->target;
if (u->success)
target->ctx->stats_results++;
// Now we're a part of the target
LIST_PREPEND (target->results, u);
u->target = NULL;
target_unref (target);
}
else
unit_unref (u);
}
static void
unit_update_poller (struct unit *u, const struct pollfd *pfd)
{
int new_events = u->transport->get_poll_events (u);
hard_assert (new_events != 0);
if (!pfd || pfd->events != new_events)
poller_fd_set (&u->fd_event, new_events);
}
static void
on_unit_ready (const struct pollfd *pfd, struct unit *u)
{
struct service *service = u->service;
struct transport *transport = u->transport;
enum transport_io_result result;
bool got_eof = false;
if ((result = transport->on_readable (u)) == TRANSPORT_IO_ERROR)
goto error;
got_eof |= result == TRANSPORT_IO_EOF;
if (u->read_buffer.len)
{
struct str *buf = &u->read_buffer;
service->on_data (u->service_data, buf->str, buf->len);
str_remove_slice (buf, 0, buf->len);
if (u->abortion_requested)
goto abort;
}
if ((result = transport->on_writeable (u)) == TRANSPORT_IO_ERROR)
goto error;
got_eof |= result == TRANSPORT_IO_EOF;
if (got_eof)
{
if (service->on_eof)
service->on_eof (u->service_data);
if (u->abortion_requested || !u->write_buffer.len)
goto abort;
}
unit_update_poller (u, pfd);
return;
error:
if (service->on_error)
service->on_error (u->service_data);
abort:
unit_abort (u);
}
static void
unit_start_scan (struct unit *u)
{
if (!u->transport->init (u))
{
// TODO: maybe print a message with the problem?
unit_abort (u);
return;
}
u->scan_started = true;
poller_timer_set (&u->timeout_event, u->target->ctx->scan_timeout * 1000);
u->service_data = u->service->scan_init (u->service, u);
u->fd_event.dispatcher = (poller_fd_fn) on_unit_ready;
unit_update_poller (u, NULL);
}
static void
on_unit_connected (const struct pollfd *pfd, struct unit *u)
{
(void) pfd;
poller_timer_reset (&u->timeout_event);
int error;
socklen_t error_len = sizeof error;
if (!getsockopt (pfd->fd, SOL_SOCKET, SO_ERROR, &error, &error_len)
&& error != 0)
{
// XXX: what if we get EADDRNOTAVAIL in here? Can we? If yes,
// we'll have to return the request back to the generator to retry.
// XXX: we could also call bind separately, with INADDR_ANY, 0.
// Then EADDRINUSE (as per man 2 bind) means port exhaustion.
// But POSIX seems to say that this can block, too.
soft_assert (error != EADDRNOTAVAIL);
unit_abort (u);
}
else
unit_start_scan (u);
}
static struct unit *
unit_new (struct target *target, int socket_fd, uint16_t port,
struct service *service, struct transport *transport)
{
struct unit *u = xcalloc (1, sizeof *u);
u->ref_count = 1;
u->target = target_ref (target);
u->socket_fd = socket_fd;
u->port = port;
u->service = service;
u->transport = transport;
str_init (&u->read_buffer);
str_init (&u->write_buffer);
str_vector_init (&u->info);
poller_timer_init (&u->timeout_event, &target->ctx->poller);
u->timeout_event.dispatcher = (poller_timer_fn) unit_abort;
u->timeout_event.user_data = u;
poller_fd_init (&u->fd_event, &target->ctx->poller, socket_fd);
u->fd_event.dispatcher = (poller_fd_fn) on_unit_connected;
u->fd_event.user_data = u;
LIST_PREPEND (target->running_units, u);
return u;
}
enum unit_make_result
{
UNIT_MAKE_OK, ///< Operation completed successfully
UNIT_MAKE_ERROR, ///< Unspecified error occured
UNIT_MAKE_TRY_AGAIN ///< Try again later
};
static enum unit_make_result
unit_make (struct target *target, uint32_t ip, uint16_t port,
struct service *service, struct transport *transport)
{
// TODO: more exhaustive checking of errno
struct app_context *ctx = target->ctx;
int socket_fd = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (socket_fd == -1)
return errno == EMFILE
? UNIT_MAKE_TRY_AGAIN
: UNIT_MAKE_ERROR;
set_blocking (socket_fd, false);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl (ip);
addr.sin_port = htons (port);
bool connected;
if (!connect (socket_fd, (struct sockaddr *) &addr, sizeof addr))
connected = true;
else if (errno == EINPROGRESS)
connected = false;
else
{
xclose (socket_fd);
return errno == EADDRNOTAVAIL
? UNIT_MAKE_TRY_AGAIN
: UNIT_MAKE_ERROR;
}
struct unit *u = unit_new (target, socket_fd, port, service, transport);
if (connected)
unit_start_scan (u);
else
{
poller_timer_set (&u->timeout_event, ctx->connect_timeout * 1000);
poller_fd_set (&u->fd_event, POLLOUT);
}
return UNIT_MAKE_OK;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
try_finish_quit (struct app_context *ctx)
{
if (!ctx->running_targets && !ctx->generator.current_target)
ctx->polling = false;
}
static void
initiate_quit (struct app_context *ctx)
{
ctx->quitting = true;
indicator_set_status (&ctx->indicator, xstrdup ("Quitting"));
// Abort all running units
struct target *t_iter, *t_next;
for (t_iter = ctx->running_targets; t_iter; t_iter = t_next)
{
t_next = t_iter->next;
struct unit *u_iter, *u_next;
for (u_iter = t_iter->running_units; u_iter; u_iter = u_next)
{
u_next = u_iter->next;
unit_abort (u_iter);
}
}
// Let the current target die
target_unref (ctx->generator.current_target);
ctx->generator.current_target = NULL;
try_finish_quit (ctx);
}
// --- Plugins -----------------------------------------------------------------
static void
plugin_api_register_service (void *app_context, struct service *info)
{
struct app_context *ctx = app_context;
if (str_map_find (&ctx->services, info->name))
print_error ("attempt to re-register duplicate service `%s'",
info->name);
else
str_map_set (&ctx->services, info->name, info);
}
static const char *
plugin_api_get_config (void *app_context, const char *key)
{
struct app_context *ctx = app_context;
return str_map_find (&ctx->config, key);
}
static const char *
plugin_api_unit_get_address (struct unit *u)
{
return u->target->ip_string;
}
static ssize_t
plugin_api_unit_write (struct unit *u, const void *buf, size_t len)
{
if (u->abortion_requested || u->aborted)
return -1;
str_append_data (&u->write_buffer, buf, len);
return len;
}
static void
plugin_api_unit_set_success (struct unit *u, bool success)
{
u->success = success;
}
static void
plugin_api_unit_add_info (struct unit *u, const char *result)
{
str_vector_add (&u->info, result);
}
static void
plugin_api_unit_abort (struct unit *u)
{
u->abortion_requested = true;
}
static struct plugin_api g_plugin_vtable =
{
.register_service = plugin_api_register_service,
.get_config = plugin_api_get_config,
.unit_get_address = plugin_api_unit_get_address,
.unit_write = plugin_api_unit_write,
.unit_set_success = plugin_api_unit_set_success,
.unit_add_info = plugin_api_unit_add_info,
.unit_abort = plugin_api_unit_abort
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static bool
load_one_plugin (struct app_context *ctx, const char *name, const char *path)
{
void *table = dlopen (path, RTLD_LAZY | RTLD_LOCAL);
if (!table)
{
print_error ("could not load `%s': %s", name, dlerror ());
return false;
}
struct plugin_info *info = dlsym (table, "ponymap_plugin_info");
if (!info)
print_error ("could not load `%s': %s",
name, "cannot find plugin info");
else if (info->api_version != API_VERSION)
print_error ("could not load `%s': %s",
name, "incompatible API version");
else if (!info->initialize (ctx, &g_plugin_vtable))
print_error ("could not load `%s': %s",
name, "plugin initialization failed");
else
return true;
dlclose (table);
return false;
}
static bool
load_plugins (struct app_context *ctx)
{
const char *plugin_dir = str_map_find (&ctx->config, "plugin_dir");
if (!plugin_dir)
{
print_fatal ("no plugin directory defined");
return false;
}
DIR *dir = opendir (plugin_dir);
if (!dir)
{
print_fatal ("%s: %s",
"cannot open plugin directory", strerror (errno));
return false;
}
bool success = false;
struct dirent buf, *iter;
while (true)
{
if (readdir_r (dir, &buf, &iter))
{
print_fatal ("%s: %s", "readdir_r", strerror (errno));
break;
}
if (!iter)
{
success = true;
break;
}
char *dot = strrchr (iter->d_name, '.');
if (!dot || strcmp (dot, ".so"))
continue;
char *path = xstrdup_printf ("%s/%s", plugin_dir, iter->d_name);
(void) load_one_plugin (ctx, iter->d_name, path);
free (path);
}
closedir (dir);
return success;
}
// --- Plain transport ---------------------------------------------------------
static bool
transport_plain_init (struct unit *u)
{
(void) u;
return true;
}
static void
transport_plain_cleanup (struct unit *u)
{
(void) u;
}
static enum transport_io_result
transport_plain_on_readable (struct unit *u)
{
struct str *buf = &u->read_buffer;
ssize_t n_read;
while (true)
{
str_ensure_space (buf, 512);
n_read = recv (u->socket_fd, buf->str + buf->len,
buf->alloc - buf->len - 1 /* null byte */, 0);
if (n_read > 0)
{
buf->str[buf->len += n_read] = '\0';
continue;
}
if (n_read == 0)
return TRANSPORT_IO_EOF;
if (errno == EAGAIN)
return TRANSPORT_IO_OK;
if (errno == EINTR)
continue;
print_debug ("%s: %s: %s", __func__, "recv", strerror (errno));
return TRANSPORT_IO_ERROR;
}
}
static enum transport_io_result
transport_plain_on_writeable (struct unit *u)
{
struct str *buf = &u->write_buffer;
ssize_t n_written;
while (buf->len)
{
n_written = send (u->socket_fd, buf->str, buf->len, 0);
if (n_written >= 0)
{
str_remove_slice (buf, 0, n_written);
continue;
}
if (errno == EAGAIN)
return TRANSPORT_IO_OK;
if (errno == EINTR)
continue;
print_debug ("%s: %s: %s", __func__, "send", strerror (errno));
return TRANSPORT_IO_ERROR;
}
return TRANSPORT_IO_OK;
}
static int
transport_plain_get_poll_events (struct unit *u)
{
int events = POLLIN;
if (u->write_buffer.len)
events |= POLLOUT;
return events;
}
static struct transport g_transport_plain =
{
.name = "plain",
.init = transport_plain_init,
.cleanup = transport_plain_cleanup,
.on_readable = transport_plain_on_readable,
.on_writeable = transport_plain_on_writeable,
.get_poll_events = transport_plain_get_poll_events,
};
// --- SSL/TLS transport -------------------------------------------------------
struct transport_tls_data
{
SSL *ssl; ///< SSL/TLS connection
bool ssl_rx_want_tx; ///< SSL_read() wants to write
bool ssl_tx_want_rx; ///< SSL_write() wants to read
};
static bool
transport_tls_init (struct unit *u)
{
SSL *ssl = SSL_new (u->target->ctx->ssl_ctx);
if (!ssl || !SSL_set_fd (ssl, u->socket_fd))
{
const char *error_info = ERR_error_string (ERR_get_error (), NULL);
print_debug ("%s: %s",
"could not initialize SSL/TLS connection", error_info);
SSL_free (ssl);
return false;
}
SSL_set_connect_state (ssl);
struct transport_tls_data *data = xcalloc (1, sizeof *data);
data->ssl = ssl;
// XXX: maybe set `ssl_rx_want_tx' to force a handshake?
u->transport_data = data;
return true;
}
static void
transport_tls_add_certificate_info (struct unit *u, X509 *cert)
{
char *subject = X509_NAME_oneline (X509_get_subject_name (cert), NULL, 0);
char *issuer = X509_NAME_oneline (X509_get_issuer_name (cert), NULL, 0);
str_vector_add_owned (&u->info, xstrdup_printf ("%s: %s",
"certificate subject", subject));
str_vector_add_owned (&u->info, xstrdup_printf ("%s: %s",
"certificate issuer", issuer));
free (subject);
free (issuer);
}
static void
transport_tls_cleanup (struct unit *u)
{
struct transport_tls_data *data = u->transport_data;
if (u->success)
{
X509 *cert = SSL_get_peer_certificate (data->ssl);
if (cert)
{
transport_tls_add_certificate_info (u, cert);
X509_free (cert);
}
}
SSL_free (data->ssl);
free (data);
}
static enum transport_io_result
transport_tls_on_readable (struct unit *u)
{
struct transport_tls_data *data = u->transport_data;
if (data->ssl_tx_want_rx)
return TRANSPORT_IO_OK;
struct str *buf = &u->read_buffer;
data->ssl_rx_want_tx = false;
while (true)
{
str_ensure_space (buf, 4096);
int n_read = SSL_read (data->ssl, buf->str + buf->len,
buf->alloc - buf->len - 1 /* null byte */);
const char *error_info = NULL;
switch (xssl_get_error (data->ssl, n_read, &error_info))
{
case SSL_ERROR_NONE:
buf->str[buf->len += n_read] = '\0';
continue;
case SSL_ERROR_ZERO_RETURN:
return TRANSPORT_IO_EOF;
case SSL_ERROR_WANT_READ:
return TRANSPORT_IO_OK;
case SSL_ERROR_WANT_WRITE:
data->ssl_rx_want_tx = true;
return TRANSPORT_IO_OK;
case XSSL_ERROR_TRY_AGAIN:
continue;
default:
print_debug ("%s: %s: %s", __func__, "SSL_read", error_info);
return TRANSPORT_IO_ERROR;
}
}
}
static enum transport_io_result
transport_tls_on_writeable (struct unit *u)
{
struct transport_tls_data *data = u->transport_data;
if (data->ssl_rx_want_tx)
return TRANSPORT_IO_OK;
struct str *buf = &u->write_buffer;
data->ssl_tx_want_rx = false;
while (buf->len)
{
int n_written = SSL_write (data->ssl, buf->str, buf->len);
const char *error_info = NULL;
switch (xssl_get_error (data->ssl, n_written, &error_info))
{
case SSL_ERROR_NONE:
str_remove_slice (buf, 0, n_written);
continue;
case SSL_ERROR_ZERO_RETURN:
return TRANSPORT_IO_EOF;
case SSL_ERROR_WANT_WRITE:
return TRANSPORT_IO_OK;
case SSL_ERROR_WANT_READ:
data->ssl_tx_want_rx = true;
return TRANSPORT_IO_OK;
case XSSL_ERROR_TRY_AGAIN:
continue;
default:
print_debug ("%s: %s: %s", __func__, "SSL_write", error_info);
return TRANSPORT_IO_ERROR;
}
}
return TRANSPORT_IO_OK;
}
static int
transport_tls_get_poll_events (struct unit *u)
{
struct transport_tls_data *data = u->transport_data;
int events = POLLIN;
if (u->write_buffer.len || data->ssl_rx_want_tx)
events |= POLLOUT;
// While we're waiting for an opposite event, we ignore the original
if (data->ssl_rx_want_tx) events &= ~POLLIN;
if (data->ssl_tx_want_rx) events &= ~POLLOUT;
return events;
}
static struct transport g_transport_tls =
{
.name = "SSL/TLS",
.init = transport_tls_init,
.cleanup = transport_tls_cleanup,
.on_readable = transport_tls_on_readable,
.on_writeable = transport_tls_on_writeable,
.get_poll_events = transport_tls_get_poll_events,
};
static void
initialize_tls (struct app_context *ctx)
{
SSL_CTX *ssl_ctx = SSL_CTX_new (SSLv23_client_method ());
if (!ctx)
{
const char *error_info = ERR_error_string (ERR_get_error (), NULL);
print_error ("%s: %s", "could not initialize SSL/TLS", error_info);
return;
}
// Fuck off, we're just scanning
SSL_CTX_set_verify (ssl_ctx, SSL_VERIFY_NONE, NULL);
SSL_CTX_set_mode (ssl_ctx,
SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
ctx->ssl_ctx = ssl_ctx;
LIST_PREPEND (ctx->transports, &g_transport_tls);
}
// --- Tree printer ------------------------------------------------------------
struct node
{
struct node *next; ///< The next sibling in order
struct node *children; ///< Children of this node
char *text; ///< Text of this node
bool bold; ///< Whether to print in bold font
};
static struct node *
node_new (char *text)
{
struct node *self = xcalloc (1, sizeof *self);
self->text = text;
return self;
}
static void
node_delete (struct node *self)
{
struct node *iter, *next;
for (iter = self->children; iter; iter = next)
{
next = iter->next;
node_delete (iter);
}
free (self->text);
free (self);
}
struct node_print_level
{
struct node_print_level *next; ///< Next print level
const char *start; ///< Starting indentation
const char *continuation; ///< Continuation
bool started; ///< Printed starting indentation
};
struct node_print_data
{
struct node_print_level *head; ///< The first level
struct node_print_level **tail; ///< Where to place further levels
};
static char *
node_escape_text (const char *text)
{
struct str filtered;
str_init (&filtered);
int c;
while ((c = *text++))
str_append_c (&filtered,
(isascii (c) && (isgraph (c) || c == ' ')) ? c : '.');
return str_steal (&filtered);
}
static void
node_print_tree_level (struct node *self, struct node_print_data *data)
{
struct str indent;
str_init (&indent);
for (struct node_print_level *iter = data->head; iter; iter = iter->next)
{
bool started = iter->started;
iter->started = true;
str_append (&indent, started ? iter->continuation : iter->start);
}
fputs (indent.str, stdout);
str_free (&indent);
char *escaped = node_escape_text (self->text);
if (self->bold)
print_bold (stdout, escaped);
else
fputs (escaped, stdout);
fputc ('\n', stdout);
free (escaped);
struct node_print_level level;
level.next = NULL;
level.start = " |- ";
level.continuation = " | ";
level.started = false;
struct node_print_level **prev_tail = data->tail;
*data->tail = &level;
data->tail = &level.next;
for (struct node *iter = self->children; iter; iter = iter->next)
{
if (!iter->next)
{
level.start = " '- ";
level.continuation = " ";
}
level.started = false;
node_print_tree_level (iter, data);
}
data->tail = prev_tail;
*data->tail = NULL;
}
static void
node_print_tree (struct node *self)
{
struct node_print_data data;
data.head = NULL;
data.tail = &data.head;
node_print_tree_level (self, &data);
}
// --- Job generation and result aggregation -----------------------------------
struct target_dump_data
{
struct unit **results; ///< Results sorted by service
size_t results_len; ///< Number of results
uint32_t *undetermined; ///< Bitmap of undetermined services
};
static void
target_dump_json (struct target *self, struct target_dump_data *data)
{
json_t *o = json_object ();
json_array_append_new (self->ctx->json_results, o);
json_object_set_new (o, "address", json_string (self->ip_string));
if (self->hostname)
json_object_set_new (o, "hostname", json_string (self->hostname));
if (self->ctx->quitting)
json_object_set_new (o, "partial", json_boolean (true));
json_t *services = json_array ();
json_object_set_new (o, "services", services);
struct service *last_service = NULL;
struct transport *last_transport = NULL;
json_t *service, *ports;
for (size_t i = 0; i < data->results_len; i++)
{
struct unit *u = data->results[i];
if (u->service != last_service || u->transport != last_transport)
{
service = json_object ();
ports = json_array ();
json_array_append_new (services, service);
json_object_set_new (service, "name",
json_string (u->service->name));
json_object_set_new (service, "transport",
json_string (u->transport->name));
json_object_set_new (service, "ports", ports);
last_service = u->service;
last_transport = u->transport;
}
json_t *port = json_object ();
json_array_append_new (ports, port);
json_object_set_new (port, "port", json_integer (u->port));
json_t *info = json_array ();
json_object_set_new (port, "info", info);
for (size_t k = 0; k < u->info.len; k++)
json_array_append_new (info, json_string (u->info.vector[k]));
}
json_t *undetermined = json_array ();
json_object_set_new (o, "undetermined", undetermined);
if (!data->undetermined)
return;
size_t block = 8 * sizeof *data->undetermined;
for (size_t i = 0; i < 65536 / block; i++)
for (size_t k = 0; k < block; k++)
{
if (!(data->undetermined[i] & (1 << k)))
continue;
service = json_object ();
json_object_set_new (service, "port", json_integer (i * block + k));
json_array_append_new (undetermined, service);
}
}
static void
target_dump_terminal_undetermined (uint16_t port_no, struct node ***tail)
{
struct servent *serv = getservbyport (ntohs (port_no), "tcp");
struct node *port = **tail = node_new (serv
? xstrdup_printf ("port %" PRIu16 " (%s)",
port_no, serv->s_name)
: xstrdup_printf ("port %" PRIu16, port_no));
*tail = &port->next;
}
static void
target_dump_terminal (struct target *self, struct target_dump_data *data)
{
indicator_hide (&self->ctx->indicator);
struct str tmp;
str_init (&tmp);
str_append (&tmp, self->ip_string);
if (self->hostname)
str_append_printf (&tmp, " (%s)", self->hostname);
if (self->ctx->quitting)
str_append_printf (&tmp, " (%s)", "partial");
struct node *root = node_new (str_steal (&tmp));
root->bold = true;
struct service *last_service = NULL;
struct transport *last_transport = NULL;
struct node *service, **s_tail = &root->children, *port, **p_tail;
for (size_t i = 0; i < data->results_len; i++)
{
struct unit *u = data->results[i];
if (u->service != last_service || u->transport != last_transport)
{
*s_tail = service = node_new (xstrdup_printf ("%s (%s)",
u->service->name, u->transport->name));
s_tail = &service->next;
p_tail = &service->children;
last_service = u->service;
last_transport = u->transport;
}
port = *p_tail = node_new (xstrdup_printf ("port %" PRIu16, u->port));
p_tail = &port->next;
struct node *info, **i_tail = &port->children;
for (size_t k = 0; k < u->info.len; k++)
{
info = *i_tail = node_new (xstrdup (u->info.vector[k]));
i_tail = &info->next;
}
}
if (data->undetermined)
{
*s_tail = service = node_new (xstrdup ("undetermined"));
p_tail = &service->children;
size_t block = 8 * sizeof *data->undetermined;
for (size_t i = 0; i < 65536 / block; i++)
for (size_t k = 0; k < block; k++)
if ((data->undetermined[i] & (1 << k)))
target_dump_terminal_undetermined (i * block + k, &p_tail);
}
node_print_tree (root);
node_delete (root);
putchar ('\n');
indicator_show (&self->ctx->indicator);
}
static int
unit_cmp_by_order (const void *ax, const void *bx)
{
const struct unit **ay = (void *) ax, **by = (void *) bx;
const struct unit *a = *ay, *b = *by;
int x = strcmp (a->service->name, b->service->name);
if (!x) x = strcmp (a->transport->name, b->transport->name);
if (!x) x = (int) a->port - (int) b->port;
return x;
}
static void
target_dump_results (struct target *self)
{
struct app_context *ctx = self->ctx;
struct target_dump_data data;
// Equals { successfully connected } \ { any service detected }
static uint32_t undetermined[65536 / 32];
memset (undetermined, 0, sizeof undetermined);
size_t len = 0;
for (struct unit *iter = self->results; iter; iter = iter->next)
{
if (iter->success)
len++;
else
undetermined[iter->port / 32] |= 1 << (iter->port % 32);
}
struct unit *sorted[len];
data.results = sorted;
data.results_len = len;
for (struct unit *iter = self->results; iter; iter = iter->next)
if (iter->success)
{
sorted[--len] = iter;
undetermined[iter->port / 32] &= ~(1 << (iter->port % 32));
}
// Sort them by service name so that they can be grouped
qsort (sorted, N_ELEMENTS (sorted), sizeof *sorted, unit_cmp_by_order);
// Only set the field if there were any undetermined services at all
data.undetermined = NULL;
for (size_t i = 0; i < N_ELEMENTS (undetermined); i++)
if (undetermined[i])
{
data.undetermined = undetermined;
break;
}
if (ctx->json_results)
target_dump_json (self, &data);
target_dump_terminal (self, &data);
}
static void
target_update_indicator (struct target *self)
{
char *status = xstrdup_printf ("Scanning %s", self->ip_string);
struct indicator *indicator = &self->ctx->indicator;
if (!indicator->status || strcmp (status, indicator->status))
indicator_set_status (&self->ctx->indicator, status);
else
free (status);
indicator_show (&self->ctx->indicator);
}
static struct target *
target_ref (struct target *self)
{
self->ref_count++;
return self;
}
static void
target_unref (struct target *self)
{
if (!self || --self->ref_count)
return;
if (self->results)
target_dump_results (self);
// These must have been aborted already (although we could do that in here)
hard_assert (!self->running_units);
struct unit *iter, *next;
for (iter = self->results; iter; iter = next)
{
next = iter->next;
unit_unref (iter);
}
struct app_context *ctx = self->ctx;
LIST_UNLINK_WITH_TAIL (ctx->running_targets, ctx->running_tail, self);
if (!ctx->running_targets)
indicator_hide (&ctx->indicator);
else if (!ctx->quitting && ctx->running_targets)
target_update_indicator (ctx->running_targets);
free (self->hostname);
free (self);
try_finish_quit (ctx);
}
static void
generator_make_target (struct app_context *ctx)
{
hard_assert (!ctx->quitting);
struct generator *g = &ctx->generator;
struct target *target = xcalloc (1, sizeof *target);
hard_assert (g->current_target == NULL);
g->current_target = target;
target->ref_count = 1;
target->ctx = ctx;
target->ip = g->ip_iter;
uint32_t address = htonl (target->ip);
if (!inet_ntop (AF_INET, &address,
target->ip_string, sizeof target->ip_string))
{
print_error ("%s: %s", "inet_ntop", strerror (errno));
*target->ip_string = '\0';
}
if (g->ip_iter == g->ip_range_iter->original_address
&& strcmp (target->ip_string, g->ip_range_iter->original_name))
target->hostname = xstrdup (g->ip_range_iter->original_name);
LIST_APPEND_WITH_TAIL (ctx->running_targets, ctx->running_tail, target);
target_update_indicator (ctx->running_targets);
ctx->stats_hosts++;
}
static void
generator_init (struct app_context *ctx)
{
struct generator *g = &ctx->generator;
g->ip_range_iter = ctx->ip_list;
g->ip_iter = g->ip_range_iter->start;
g->current_target = NULL;
generator_make_target (ctx);
g->port_range_iter = ctx->port_list;
g->port_iter = g->port_range_iter->start;
str_map_iter_init (&g->svc_iter, &ctx->svc_list);
g->svc = str_map_iter_next (&g->svc_iter);
g->transport_iter = ctx->transports;
}
static bool
generator_step (struct app_context *ctx)
{
struct generator *g = &ctx->generator;
if (ctx->quitting || !g->ip_range_iter)
return false;
if (!g->current_target)
generator_make_target (ctx);
switch (unit_make (g->current_target,
g->ip_iter, g->port_iter, g->svc, g->transport_iter))
{
case UNIT_MAKE_OK:
case UNIT_MAKE_ERROR:
break;
case UNIT_MAKE_TRY_AGAIN:
// TODO: set a timer for a few seconds, we might eventually get lucky
return false;
}
// Try to find the next available transport
while (true)
{
if (!(g->transport_iter = g->transport_iter->next))
break;
if (g->transport_iter == &g_transport_tls
&& !(g->svc->flags & SERVICE_SUPPORTS_TLS))
continue;
return true;
}
g->transport_iter = ctx->transports;
// Try to find the next service to scan for
if ((g->svc = str_map_iter_next (&g->svc_iter)))
return true;
str_map_iter_init (&g->svc_iter, &ctx->svc_list);
g->svc = str_map_iter_next (&g->svc_iter);
// Try to find the next port to scan
if (g->port_iter != UINT16_MAX && g->port_iter < g->port_range_iter->end)
{
g->port_iter++;
return true;
}
g->port_range_iter = g->port_range_iter->next;
if (g->port_range_iter)
{
g->port_iter = g->port_range_iter->start;
return true;
}
g->port_range_iter = ctx->port_list;
g->port_iter = g->port_range_iter->start;
// Moving on to the next target
target_unref (g->current_target);
g->current_target = NULL;
// Try to find the next IP to scan
if (g->ip_iter != UINT32_MAX && g->ip_iter < g->ip_range_iter->end)
{
g->ip_iter++;
return true;
}
g->ip_range_iter = g->ip_range_iter->next;
if (g->ip_range_iter)
{
g->ip_iter = g->ip_range_iter->start;
return true;
}
// No more jobs to be created
return false;
}
static void
on_generator_step_requested (struct app_context *ctx)
{
poller_idle_reset (&ctx->step_event);
while (generator_step (ctx))
;
}
// --- Signals -----------------------------------------------------------------
static int g_signal_pipe[2]; ///< A pipe used to signal... signals
/// Program termination has been requested by a signal
static volatile sig_atomic_t g_termination_requested;
static void
sigterm_handler (int signum)
{
(void) signum;
g_termination_requested = true;
int original_errno = errno;
if (write (g_signal_pipe[1], "t", 1) == -1)
soft_assert (errno == EAGAIN);
errno = original_errno;
}
static void
setup_signal_handlers (void)
{
if (pipe (g_signal_pipe) == -1)
exit_fatal ("%s: %s", "pipe", strerror (errno));
set_cloexec (g_signal_pipe[0]);
set_cloexec (g_signal_pipe[1]);
// So that the pipe cannot overflow; it would make write() block within
// the signal handler, which is something we really don't want to happen.
// The same holds true for read().
set_blocking (g_signal_pipe[0], false);
set_blocking (g_signal_pipe[1], false);
signal (SIGPIPE, SIG_IGN);
struct sigaction sa;
sa.sa_flags = SA_RESTART;
sigemptyset (&sa.sa_mask);
sa.sa_handler = sigterm_handler;
if (sigaction (SIGINT, &sa, NULL) == -1
|| sigaction (SIGTERM, &sa, NULL) == -1)
exit_fatal ("sigaction: %s", strerror (errno));
}
// --- Main program ------------------------------------------------------------
typedef bool (*list_foreach_fn) (void *, const char *);
static bool
list_foreach (const char *list, list_foreach_fn callback, void *user_data)
{
struct str_vector items;
str_vector_init (&items);
bool success = false;
split_str_ignore_empty (list, ',', &items);
for (size_t i = 0; i < items.len; i++)
if (!callback (user_data, strip_str_in_place (items.vector[i], " ")))
goto fail;
success = true;
fail:
str_vector_free (&items);
return success;
}
static bool
parse_port (const char *port, uint16_t *out)
{
unsigned long x;
struct servent *service;
if ((service = getservbyname (port, "tcp")))
*out = ntohs (service->s_port);
else if (xstrtoul (&x, port, 10) && x <= UINT16_MAX)
*out = x;
else
return false;
return true;
}
static bool
add_port_range (struct app_context *ctx, const char *range)
{
uint16_t start_port, end_port;
const char *hyphen = strchr (range, '-');
if (hyphen)
{
char start[hyphen - range + 1];
memcpy (start, range, sizeof range - 1);
start[sizeof start - 1] = '\0';
const char *end = hyphen + 1;
if (!parse_port (start, &start_port)
|| !parse_port (end, &end_port))
goto fail;
}
else if (!parse_port (range, &start_port))
goto fail;
else
end_port = start_port;
if (start_port > end_port)
goto fail;
struct port_range *pr = xcalloc (1, sizeof *pr);
pr->start = start_port;
pr->end = end_port;
LIST_PREPEND (ctx->port_list, pr);
return true;
fail:
print_error ("%s: `%s'", "invalid port range", range);
return false;
}
static bool
add_service (struct app_context *ctx, const char *name)
{
// To be resolved later
str_map_set (&ctx->svc_list, name, xstrdup (name));
return true;
}
static bool
add_target (struct app_context *ctx, const char *target)
{
char host[strlen (target) + 1];
strcpy (host, target);
unsigned long mask = 32;
char *slash = strchr (host, '/');
if (slash)
{
*slash++ = '\0';
if (!xstrtoul (&mask, slash, 10) || mask > 32)
{
print_error ("invalid network mask in `%s'", target);
return false;
}
}
struct addrinfo hints = { .ai_family = AF_INET };
struct addrinfo *result;
int err = getaddrinfo (host, NULL, &hints, &result);
if (err)
{
print_error ("cannot resolve `%s': %s", host, gai_strerror (err));
return false;
}
struct ip_range *range = xcalloc (1, sizeof *range);
uint32_t bitmask = ((uint64_t) 1 << (32 - mask)) - 1;
hard_assert (result->ai_family == AF_INET);
hard_assert (result->ai_addr->sa_family == AF_INET);
uint32_t addr = ntohl (((struct sockaddr_in *)
result->ai_addr)->sin_addr.s_addr);
range->start = addr & ~bitmask;
range->end = addr | bitmask;
freeaddrinfo (result);
range->original_name = xstrdup (host);
range->original_address = addr;
LIST_PREPEND (ctx->ip_list, range);
return true;
}
static void
merge_port_ranges (struct app_context *ctx)
{
// Make sure that no port is scanned twice
struct port_range *i1, *i2, *i2_next;
for (i1 = ctx->port_list; i1; i1 = i1->next)
for (i2 = ctx->port_list; i2; i2 = i2_next)
{
i2_next = i2->next;
if (i1 == i2 || i1->end < i2->start || i2->end < i1->start)
continue;
i1->start = MIN (i1->start, i2->start);
i1->end = MAX (i1->end, i2->end);
LIST_UNLINK (ctx->port_list, i2);
free (i2);
}
}
static void
merge_ip_ranges (struct app_context *ctx)
{
// Make sure that no IP is scanned twice
struct ip_range *i1, *i2, *i2_next;
for (i1 = ctx->ip_list; i1; i1 = i1->next)
for (i2 = ctx->ip_list; i2; i2 = i2_next)
{
i2_next = i2->next;
if (i1 == i2 || i1->end < i2->start || i2->end < i1->start)
continue;
i1->start = MIN (i1->start, i2->start);
i1->end = MAX (i1->end, i2->end);
LIST_UNLINK (ctx->ip_list, i2);
free (i2);
}
}
static bool
resolve_service_names (struct app_context *ctx)
{
struct str_map_iter iter;
str_map_iter_init (&iter, &ctx->svc_list);
char *name = NULL;
bool success = true;
while (free (name), (name = str_map_iter_next (&iter)))
{
struct service *service;
if ((service = str_map_find (&ctx->services, name)))
{
str_map_set (&ctx->svc_list, name, service);
continue;
}
print_error ("unknown service `%s'", name);
success = false;
}
return success;
}
static void
on_signal_pipe_readable (const struct pollfd *fd, struct app_context *ctx)
{
char *dummy;
(void) read (fd->fd, &dummy, 1);
if (g_termination_requested && !ctx->quitting)
initiate_quit (ctx);
}
static void
parse_program_arguments (struct app_context *ctx, int argc, char **argv)
{
static const struct opt opts[] =
{
{ 'd', "debug", NULL, 0, "run in debug mode" },
{ 'h', "help", NULL, 0, "display this help and exit" },
{ 'V', "version", NULL, 0, "output version information and exit" },
{ 'p', "ports", "PORTS", 0,
"ports/port ranges, separated by commas" },
{ 's', "service", "SERVICES", 0,
"services to scan for, separated by commas" },
{ 't', "connect-timeout", "TIMEOUT", 0,
"timeout for connect, in seconds"
" (default: " XSTRINGIFY (DEFAULT_CONNECT_TIMEOUT) ")" },
{ 'T', "scan-timeout", "TIMEOUT", 0,
"timeout for service scans, in seconds"
" (default: " XSTRINGIFY (DEFAULT_SCAN_TIMEOUT) ")" },
{ 'j', "json-output", "FILENAME", OPT_LONG_ONLY,
"write the results as JSON" },
{ 'w', "write-default-cfg", "FILENAME",
OPT_OPTIONAL_ARG | OPT_LONG_ONLY,
"write a default configuration file and exit" },
{ 0, NULL, NULL, 0, NULL }
};
struct opt_handler oh;
opt_handler_init (&oh, argc, argv, opts,
"{ ADDRESS [/MASK] }...", "Experimental network scanner.");
int c;
while ((c = opt_handler_get (&oh)) != -1)
switch (c)
{
unsigned long ul;
case 'd':
g_debug_mode = true;
break;
case 'h':
opt_handler_usage (&oh, stdout);
exit (EXIT_SUCCESS);
case 'V':
printf (PROGRAM_NAME " " PROGRAM_VERSION "\n");
exit (EXIT_SUCCESS);
case 'p':
if (!list_foreach (optarg, (list_foreach_fn) add_port_range, ctx))
exit (EXIT_FAILURE);
break;
case 's':
if (!list_foreach (optarg, (list_foreach_fn) add_service, ctx))
exit (EXIT_FAILURE);
break;
case 't':
if (!xstrtoul (&ul, optarg, 10) || !ul)
{
print_error ("invalid value for %s", "connect timeout");
exit (EXIT_FAILURE);
}
ctx->connect_timeout = ul;
break;
case 'T':
if (!xstrtoul (&ul, optarg, 10) || !ul)
{
print_error ("invalid value for %s", "scan timeout");
exit (EXIT_FAILURE);
}
ctx->scan_timeout = ul;
break;
case 'j':
ctx->json_results = json_array ();
ctx->json_filename = optarg;
break;
case 'w':
call_write_default_config (optarg, g_config_table);
exit (EXIT_SUCCESS);
default:
print_error ("wrong options");
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
argc -= optind;
argv += optind;
if (!argc)
{
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
for (int i = 0; i < argc; i++)
if (!add_target (ctx, argv[i]))
exit (EXIT_FAILURE);
opt_handler_free (&oh);
}
int
main (int argc, char *argv[])
{
struct app_context ctx;
app_context_init (&ctx);
parse_program_arguments (&ctx, argc, argv);
setup_signal_handlers ();
srand (time (NULL));
// Set the maximum count of file descriptorts to the hard limit
struct rlimit limit;
if (getrlimit (RLIMIT_NOFILE, &limit))
print_warning ("%s: %s", "getrlimit failed", strerror (errno));
else
{
limit.rlim_cur = limit.rlim_max;
if (setrlimit (RLIMIT_NOFILE, &limit))
print_warning ("%s: %s", "setrlimit failed", strerror (errno));
}
init_terminal ();
atexit (free_terminal);
SSL_library_init ();
atexit (EVP_cleanup);
SSL_load_error_strings ();
atexit (ERR_free_strings);
struct error *e = NULL;
if (!read_config_file (&ctx.config, &e))
{
print_error ("error loading configuration: %s", e->message);
error_free (e);
exit (EXIT_FAILURE);
}
struct poller_fd signal_event;
poller_fd_init (&signal_event, &ctx.poller, g_signal_pipe[0]);
signal_event.dispatcher = (poller_fd_fn) on_signal_pipe_readable;
signal_event.user_data = &ctx;
poller_fd_set (&signal_event, POLLIN);
if (!load_plugins (&ctx))
exit (EXIT_FAILURE);
// TODO: make the order unimportant; this hopes all services support
// the plain transport and that it is the first on the list
initialize_tls (&ctx);
LIST_PREPEND (ctx.transports, &g_transport_plain);
if (!ctx.port_list)
{
struct port_range *range = xcalloc (1, sizeof *range);
range->start = 1; // port 0 is reserved, not bothering with it
range->end = 65535;
ctx.port_list = range;
}
if (!ctx.svc_list.len)
{
struct str_map_iter iter;
str_map_iter_init (&iter, &ctx.services);
struct service *service;
while ((service = str_map_iter_next (&iter)))
str_map_set (&ctx.svc_list, service->name, service);
}
else
{
// So far we've only stored service _names_ to the hash map;
// let's try to resolve them to actual services.
if (!resolve_service_names (&ctx))
exit (EXIT_FAILURE);
}
merge_port_ranges (&ctx);
merge_ip_ranges (&ctx);
// Initate the scan: generate as many units as possible
generator_init (&ctx);
while (generator_step (&ctx))
;
ctx.polling = true;
while (ctx.polling)
poller_run (&ctx.poller);
printf ("Scanned %zu %s, identified %zu %s\n",
ctx.stats_hosts, ctx.stats_hosts == 1 ? "host" : "hosts",
ctx.stats_results, ctx.stats_results == 1 ? "service" : "services");
if (ctx.json_results && json_dump_file (ctx.json_results,
ctx.json_filename, JSON_INDENT (2) | JSON_SORT_KEYS | JSON_ENCODE_ANY))
print_error ("failed to write JSON output");
app_context_free (&ctx);
return EXIT_SUCCESS;
}