/*
* liberty.c: the ultimate C unlibrary
*
* Copyright (c) 2014 - 2024, Přemysl Eric Janouch
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200112L
#endif
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef __unix__
// This file may define the "BSD" macro...
#include
// ...as well as these conflicting ones
#undef MIN
#undef MAX
#endif // __unix__
#ifndef NI_MAXHOST
#define NI_MAXHOST 1025
#endif // ! NI_MAXHOST
#ifndef NI_MAXSERV
#define NI_MAXSERV 32
#endif // ! NI_MAXSERV
#ifdef LIBERTY_WANT_SSL
#include
#include
#include
#endif // LIBERTY_WANT_SSL
#include
#include "siphash.c"
extern char **environ;
#ifdef CLOCK_MONOTONIC_RAW
// This should be more accurate for shorter intervals
#define CLOCK_BEST CLOCK_MONOTONIC_RAW
#elif defined _POSIX_MONOTONIC_CLOCK
#define CLOCK_BEST CLOCK_MONOTONIC
#else // ! _POSIX_MONOTIC_CLOCK
#define CLOCK_BEST CLOCK_REALTIME
#endif // ! _POSIX_MONOTONIC_CLOCK
#if defined __GNUC__
#define ATTRIBUTE_PRINTF(x, y) __attribute__ ((format (printf, x, y)))
#else // ! __GNUC__
#define ATTRIBUTE_PRINTF(x, y)
#endif // ! __GNUC__
#if defined __GNUC__ && __GNUC__ >= 4
#define ATTRIBUTE_SENTINEL __attribute__ ((sentinel))
#else // ! __GNUC__ || __GNUC__ < 4
#define ATTRIBUTE_SENTINEL
#endif // ! __GNUC__ || __GNUC__ < 4
#define N_ELEMENTS(a) (sizeof (a) / sizeof ((a)[0]))
#define BLOCK_START do {
#define BLOCK_END } while (0)
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define STRINGIFY(x) #x
#define XSTRINGIFY(x) STRINGIFY (x)
#define CONTAINER_OF(pointer, type, member) \
((type *) ((char *) pointer - offsetof (type, member)))
char *liberty = "They who can give up essential liberty to obtain a little "
"temporary safety deserve neither liberty nor safety.";
// --- Logging -----------------------------------------------------------------
static void
log_message_stdio (void *user_data, const char *quote, const char *fmt,
va_list ap)
{
(void) user_data;
FILE *stream = stderr;
fputs (quote, stream);
vfprintf (stream, fmt, ap);
fputs ("\n", stream);
}
static void (*g_log_message_real) (void *, const char *, const char *, va_list)
= log_message_stdio;
static void
log_message (void *user_data, const char *quote, const char *fmt, ...)
ATTRIBUTE_PRINTF (3, 4);
static void
log_message (void *user_data, const char *quote, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
g_log_message_real (user_data, quote, fmt, ap);
va_end (ap);
}
// `fatal' is reserved for unexpected failures that would harm further operation
#ifndef print_fatal_data
#define print_fatal_data NULL
#endif
#ifndef print_error_data
#define print_error_data NULL
#endif
#ifndef print_warning_data
#define print_warning_data NULL
#endif
#ifndef print_status_data
#define print_status_data NULL
#endif
#define print_fatal(...) \
log_message (print_fatal_data, "fatal: ", __VA_ARGS__)
#define print_error(...) \
log_message (print_error_data, "error: ", __VA_ARGS__)
#define print_warning(...) \
log_message (print_warning_data, "warning: ", __VA_ARGS__)
#define print_status(...) \
log_message (print_status_data, "-- ", __VA_ARGS__)
#define exit_fatal(...) \
BLOCK_START \
print_fatal (__VA_ARGS__); \
exit (EXIT_FAILURE); \
BLOCK_END
// --- Debugging and assertions ------------------------------------------------
// We should check everything that may possibly fail with at least a soft
// assertion, so that any causes for problems don't slip us by silently.
//
// `g_soft_asserts_are_deadly' may be useful while running inside a debugger.
static bool g_debug_mode; ///< Debug messages are printed
static bool g_soft_asserts_are_deadly; ///< soft_assert() aborts as well
#ifndef print_debug_data
#define print_debug_data NULL
#endif
#define print_debug(...) \
BLOCK_START \
if (g_debug_mode) \
log_message (print_debug_data, "debug: ", __VA_ARGS__); \
BLOCK_END
// A few other debugging shorthands for when failures are allowed
#define LOG_FUNC_FAILURE(name, desc) \
print_debug ("%s: %s: %s", __func__, (name), (desc))
#define LOG_LIBC_FAILURE(name) \
print_debug ("%s: %s: %s", __func__, (name), strerror (errno))
static void
assertion_failure_handler (bool is_fatal, const char *file, int line,
const char *function, const char *condition)
{
const char *slash = strrchr (file, '/');
if (slash)
file = slash + 1;
if (is_fatal)
{
print_fatal ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
abort ();
}
else
print_debug ("assertion failed [%s:%d in function %s]: %s",
file, line, function, condition);
}
#define soft_assert(condition) \
((condition) ? true : \
(assertion_failure_handler (g_soft_asserts_are_deadly, \
__FILE__, __LINE__, __func__, #condition), false))
#define hard_assert(condition) \
((condition) ? (void) 0 : \
assertion_failure_handler (true, \
__FILE__, __LINE__, __func__, #condition))
// --- Safe memory management --------------------------------------------------
// When a memory allocation fails and we need the memory, we're usually pretty
// much fucked. Use the non-prefixed versions when there's a legitimate
// worry that an unrealistic amount of memory may be requested for allocation.
// XXX: it's not a good idea to use print_message() as it may want to allocate
// further memory for printf() and the output streams. That may fail.
static void *
xmalloc (size_t n)
{
void *p = malloc (n);
if (!p)
exit_fatal ("malloc: %s", strerror (errno));
return p;
}
static void *
xcalloc (size_t n, size_t m)
{
void *p = calloc (n, m);
if (!p && n && m)
exit_fatal ("calloc: %s", strerror (errno));
return p;
}
static void *
xrealloc (void *o, size_t n)
{
void *p = realloc (o, n);
if (!p && n)
exit_fatal ("realloc: %s", strerror (errno));
return p;
}
static void *
xreallocarray (void *o, size_t n, size_t m)
{
if (m && n > SIZE_MAX / m)
{
errno = ENOMEM;
exit_fatal ("reallocarray: %s", strerror (errno));
}
return xrealloc (o, n * m);
}
static char *
xstrdup (const char *s)
{
size_t len = strlen (s) + 1;
return memcpy (xmalloc (len), s, len);
}
static char *
xstrndup (const char *s, size_t n)
{
size_t size = strlen (s);
if (n > size)
n = size;
char *copy = xmalloc (n + 1);
memcpy (copy, s, n);
copy[n] = '\0';
return copy;
}
// --- Simple array support ----------------------------------------------------
// The most basic helper macros to make working with arrays not suck
#define ARRAY(type, name) type *name; size_t name ## _len, name ## _alloc;
#define ARRAY_INIT_SIZED(a, n) \
BLOCK_START \
(a) = xcalloc (sizeof *(a), (a ## _alloc) = (n)); \
(a ## _len) = 0; \
BLOCK_END
#define ARRAY_INIT(a) ARRAY_INIT_SIZED (a, 16)
#define ARRAY_RESERVE(a, n) \
BLOCK_START \
while ((a ## _alloc) - (a ## _len) < n) \
(a) = xreallocarray ((a), sizeof *(a), (a ## _alloc) <<= 1); \
BLOCK_END
// --- Double-linked list helpers ----------------------------------------------
#define LIST_HEADER(type) \
type *next; \
type *prev;
#define LIST_PREPEND(head, link) \
BLOCK_START \
(link)->prev = NULL; \
(link)->next = (head); \
if ((link)->next) \
(link)->next->prev = (link); \
(head) = (link); \
BLOCK_END
#define LIST_UNLINK(head, link) \
BLOCK_START \
if ((link)->prev) \
(link)->prev->next = (link)->next; \
else \
(head) = (link)->next; \
if ((link)->next) \
(link)->next->prev = (link)->prev; \
BLOCK_END
#define LIST_APPEND_WITH_TAIL(head, tail, link) \
BLOCK_START \
(link)->prev = (tail); \
(link)->next = NULL; \
if ((link)->prev) \
(link)->prev->next = (link); \
else \
(head) = (link); \
(tail) = (link); \
BLOCK_END
#define LIST_INSERT_WITH_TAIL(head, tail, link, following) \
BLOCK_START \
if (following) \
LIST_APPEND_WITH_TAIL ((head), (following)->prev, (link)); \
else \
LIST_APPEND_WITH_TAIL ((head), (tail), (link)); \
(link)->next = (following); \
BLOCK_END
#define LIST_UNLINK_WITH_TAIL(head, tail, link) \
BLOCK_START \
if ((tail) == (link)) \
(tail) = (link)->prev; \
LIST_UNLINK ((head), (link)); \
BLOCK_END
#define LIST_FOR_EACH(type, iter, list) \
for (type *iter = (list), *next; \
(iter && (next = iter->next)) || iter; \
iter = next)
// --- Dynamically allocated string array --------------------------------------
struct strv
{
char **vector;
size_t len;
size_t alloc;
};
static struct strv
strv_make (void)
{
struct strv self;
self.alloc = 4;
self.len = 0;
self.vector = xcalloc (sizeof *self.vector, self.alloc);
return self;
}
static void
strv_free (struct strv *self)
{
unsigned i;
for (i = 0; i < self->len; i++)
free (self->vector[i]);
free (self->vector);
self->vector = NULL;
}
static void
strv_reset (struct strv *self)
{
strv_free (self);
*self = strv_make ();
}
static void
strv_append_owned (struct strv *self, char *s)
{
self->vector[self->len] = s;
if (++self->len >= self->alloc)
self->vector = xreallocarray (self->vector,
sizeof *self->vector, (self->alloc <<= 1));
self->vector[self->len] = NULL;
}
static void
strv_append (struct strv *self, const char *s)
{
strv_append_owned (self, xstrdup (s));
}
static void
strv_append_args (struct strv *self, const char *s, ...)
ATTRIBUTE_SENTINEL;
static void
strv_append_args (struct strv *self, const char *s, ...)
{
va_list ap;
va_start (ap, s);
while (s)
{
strv_append (self, s);
s = va_arg (ap, const char *);
}
va_end (ap);
}
static void
strv_append_vector (struct strv *self, char **vector)
{
while (*vector)
strv_append (self, *vector++);
}
static char *
strv_steal (struct strv *self, size_t i)
{
hard_assert (i < self->len);
char *tmp = self->vector[i];
memmove (self->vector + i, self->vector + i + 1,
(self->len-- - i) * sizeof *self->vector);
return tmp;
}
static void
strv_remove (struct strv *self, size_t i)
{
free (strv_steal (self, i));
}
// --- Dynamically allocated strings -------------------------------------------
// Basically a string builder to abstract away manual memory management.
struct str
{
char *str; ///< String data, null terminated
size_t alloc; ///< How many bytes are allocated
size_t len; ///< How long the string actually is
};
/// We don't care about allocations that are way too large for the content, as
/// long as the allocation is below the given threshold. (Trivial heuristics.)
#define STR_SHRINK_THRESHOLD (1 << 20)
static struct str
str_make (void)
{
struct str self;
self.alloc = 16;
self.len = 0;
self.str = strcpy (xmalloc (self.alloc), "");
return self;
}
static void
str_free (struct str *self)
{
free (self->str);
self->str = NULL;
self->alloc = 0;
self->len = 0;
}
static void
str_reset (struct str *self)
{
str_free (self);
*self = str_make ();
}
static char *
str_steal (struct str *self)
{
char *str = self->str;
self->str = NULL;
str_free (self);
return str;
}
static void
str_reserve (struct str *self, size_t n)
{
// We allocate at least one more byte for the terminating null character
size_t new_alloc = self->alloc;
while (new_alloc <= self->len + n)
new_alloc <<= 1;
if (new_alloc != self->alloc)
self->str = xrealloc (self->str, (self->alloc = new_alloc));
}
static void
str_append_data (struct str *self, const void *data, size_t n)
{
str_reserve (self, n);
memcpy (self->str + self->len, data, n);
self->len += n;
self->str[self->len] = '\0';
}
static void
str_append_c (struct str *self, char c)
{
str_append_data (self, &c, 1);
}
static void
str_append (struct str *self, const char *s)
{
str_append_data (self, s, strlen (s));
}
static void
str_append_str (struct str *self, const struct str *another)
{
str_append_data (self, another->str, another->len);
}
static int
str_append_vprintf (struct str *self, const char *fmt, va_list va)
{
va_list ap;
int size;
va_copy (ap, va);
size = vsnprintf (NULL, 0, fmt, ap);
va_end (ap);
if (size < 0)
return -1;
va_copy (ap, va);
str_reserve (self, size);
size = vsnprintf (self->str + self->len, self->alloc - self->len, fmt, ap);
va_end (ap);
if (size > 0)
self->len += size;
return size;
}
static int
str_append_printf (struct str *self, const char *fmt, ...)
ATTRIBUTE_PRINTF (2, 3);
static int
str_append_printf (struct str *self, const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
int size = str_append_vprintf (self, fmt, ap);
va_end (ap);
return size;
}
static void
str_remove_slice (struct str *self, size_t start, size_t length)
{
size_t end = start + length;
hard_assert (end <= self->len);
memmove (self->str + start, self->str + end, self->len - end);
self->str[self->len -= length] = '\0';
// Shrink the string if the allocation becomes way too large
if (self->alloc >= STR_SHRINK_THRESHOLD && self->len < (self->alloc >> 2))
self->str = xrealloc (self->str, self->alloc >>= 2);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
str_pack_u8 (struct str *self, uint8_t x)
{
str_append_data (self, &x, 1);
}
static void
str_pack_u16 (struct str *self, uint16_t x)
{
uint8_t tmp[2] = { x >> 8, x };
str_append_data (self, tmp, sizeof tmp);
}
static void
str_pack_u32 (struct str *self, uint32_t x)
{
uint32_t u = x;
uint8_t tmp[4] = { u >> 24, u >> 16, u >> 8, u };
str_append_data (self, tmp, sizeof tmp);
}
static void
str_pack_u64 (struct str *self, uint64_t x)
{
uint8_t tmp[8] =
{ x >> 56, x >> 48, x >> 40, x >> 32, x >> 24, x >> 16, x >> 8, x };
str_append_data (self, tmp, sizeof tmp);
}
#define str_pack_i8(self, x) str_pack_u8 ((self), (uint8_t) (x))
#define str_pack_i16(self, x) str_pack_u16 ((self), (uint16_t) (x))
#define str_pack_i32(self, x) str_pack_u32 ((self), (uint32_t) (x))
#define str_pack_i64(self, x) str_pack_u64 ((self), (uint64_t) (x))
// --- Reading binary numbers --------------------------------------------------
// Doing this byte by byte prevents unaligned memory access issues.
static uint64_t
peek_u64be (const uint8_t *p)
{
return (uint64_t) p[0] << 56 | (uint64_t) p[1] << 48
| (uint64_t) p[2] << 40 | (uint64_t) p[3] << 32
| (uint64_t) p[4] << 24 | (uint64_t) p[5] << 16 | p[6] << 8 | p[7];
}
static uint32_t
peek_u32be (const uint8_t *p)
{
return (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 | p[2] << 8 | p[3];
}
static uint16_t
peek_u16be (const uint8_t *p)
{
return (uint16_t) p[0] << 8 | p[1];
}
static uint64_t
peek_u64le (const uint8_t *p)
{
return (uint64_t) p[7] << 56 | (uint64_t) p[6] << 48
| (uint64_t) p[5] << 40 | (uint64_t) p[4] << 32
| (uint64_t) p[3] << 24 | (uint64_t) p[2] << 16 | p[1] << 8 | p[0];
}
static uint32_t
peek_u32le (const uint8_t *p)
{
return (uint32_t) p[3] << 24 | (uint32_t) p[2] << 16 | p[1] << 8 | p[0];
}
static uint16_t
peek_u16le (const uint8_t *p)
{
return (uint16_t) p[1] << 8 | p[0];
}
struct peeker
{
uint64_t (*u64) (const uint8_t *);
uint32_t (*u32) (const uint8_t *);
uint16_t (*u16) (const uint8_t *);
};
static const struct peeker peeker_be = {peek_u64be, peek_u32be, peek_u16be};
static const struct peeker peeker_le = {peek_u64le, peek_u32le, peek_u16le};
// --- Errors ------------------------------------------------------------------
// Error reporting utilities. Inspired by GError, only much simpler.
struct error
{
char *message; ///< Textual description of the event
};
static bool
error_set (struct error **e, const char *message, ...) ATTRIBUTE_PRINTF (2, 3);
static bool
error_set (struct error **e, const char *message, ...)
{
if (!e)
return false;
va_list ap;
va_start (ap, message);
int size = vsnprintf (NULL, 0, message, ap);
va_end (ap);
hard_assert (size >= 0);
struct error *tmp = xmalloc (sizeof *tmp);
tmp->message = xmalloc (size + 1);
va_start (ap, message);
size = vsnprintf (tmp->message, size + 1, message, ap);
va_end (ap);
hard_assert (size >= 0);
soft_assert (*e == NULL);
*e = tmp;
return false;
}
static void
error_free (struct error *e)
{
free (e->message);
free (e);
}
static void
error_propagate (struct error **destination, struct error *source)
{
if (!destination)
{
error_free (source);
return;
}
soft_assert (*destination == NULL);
*destination = source;
}
// --- File descriptor utilities -----------------------------------------------
static void
set_cloexec (int fd)
{
soft_assert (fcntl (fd, F_SETFD, fcntl (fd, F_GETFD) | FD_CLOEXEC) != -1);
}
static bool
set_blocking (int fd, bool blocking)
{
int flags = fcntl (fd, F_GETFL);
if (flags == -1)
exit_fatal ("%s: %s", "fcntl", strerror (errno));
bool prev = !(flags & O_NONBLOCK);
if (blocking)
flags &= ~O_NONBLOCK;
else
flags |= O_NONBLOCK;
hard_assert (fcntl (fd, F_SETFL, flags) != -1);
return prev;
}
static bool
xwrite (int fd, const char *data, size_t len, struct error **e)
{
size_t written = 0;
while (written < len)
{
ssize_t res = write (fd, data + written, len - written);
if (res >= 0)
written += res;
else if (errno != EINTR)
return error_set (e, "%s", strerror (errno));
}
return true;
}
static void
xclose (int fd)
{
while (close (fd) == -1)
if (!soft_assert (errno == EINTR))
break;
}
// --- Randomness --------------------------------------------------------------
static bool
random_bytes (void *output, size_t len, struct error **e)
{
bool result = false;
int fd = open ("/dev/urandom", O_RDONLY);
ssize_t got = 0;
if (fd < 0)
return error_set (e, "%s: %s", "open", strerror (errno));
else if ((got = read (fd, output, len)) < 0)
error_set (e, "%s: %s", "read", strerror (errno));
else if (got != (ssize_t) len)
error_set (e, "can't get enough bytes from the device");
else
result = true;
xclose (fd);
return result;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static unsigned char g_siphash_key[16] = "SipHash 2-4 key!";
static inline void
siphash_wrapper_randomize (void)
{
// I guess there's no real need to be this paranoic, so we ignore failures
soft_assert (random_bytes (g_siphash_key, sizeof g_siphash_key, NULL));
}
static inline uint64_t
siphash_wrapper (const void *m, size_t len)
{
return siphash (g_siphash_key, m, len);
}
// --- String hash map ---------------------------------------------------------
// The most basic map (or associative array).
struct str_map_link
{
LIST_HEADER (struct str_map_link)
void *data; ///< Payload
size_t key_length; ///< Length of the key without '\0'
char key[]; ///< The key for this link
};
struct str_map
{
struct str_map_link **map; ///< The hash table data itself
size_t alloc; ///< Number of allocated entries
size_t len; ///< Number of entries in the table
void (*free) (void *); ///< Callback to destruct the payload
/// Callback that transforms all key values for storage and comparison;
/// has to behave exactly like strxfrm().
size_t (*key_xfrm) (char *dest, const char *src, size_t n);
bool shrink_lock; ///< Lock against autoshrinking
};
#define STR_MAP_MIN_ALLOC 16
typedef void (*str_map_free_fn) (void *);
static struct str_map
str_map_make (str_map_free_fn free)
{
struct str_map self;
self.alloc = STR_MAP_MIN_ALLOC;
self.len = 0;
self.free = free;
self.key_xfrm = NULL;
self.map = xcalloc (self.alloc, sizeof *self.map);
self.shrink_lock = false;
return self;
}
static void
str_map_clear (struct str_map *self)
{
struct str_map_link **iter, **end = self->map + self->alloc;
struct str_map_link *link, *tmp;
for (iter = self->map; iter < end; iter++)
for (link = *iter; link; link = tmp)
{
tmp = link->next;
if (self->free)
self->free (link->data);
free (link);
}
self->len = 0;
memset (self->map, 0, self->alloc * sizeof *self->map);
}
static void
str_map_free (struct str_map *self)
{
str_map_clear (self);
free (self->map);
self->map = NULL;
}
static uint64_t
str_map_pos (const struct str_map *self, const char *s)
{
size_t mask = self->alloc - 1;
return siphash_wrapper (s, strlen (s)) & mask;
}
static uint64_t
str_map_link_hash (const struct str_map_link *self)
{
return siphash_wrapper (self->key, self->key_length);
}
static void
str_map_resize (struct str_map *self, size_t new_size)
{
struct str_map_link **old_map = self->map;
size_t i, old_size = self->alloc;
// Only powers of two, so that we don't need to compute the modulo
hard_assert ((new_size & (new_size - 1)) == 0);
size_t mask = new_size - 1;
self->alloc = new_size;
self->map = xcalloc (self->alloc, sizeof *self->map);
for (i = 0; i < old_size; i++)
{
struct str_map_link *iter = old_map[i], *next_iter;
while (iter)
{
next_iter = iter->next;
uint64_t pos = str_map_link_hash (iter) & mask;
LIST_PREPEND (self->map[pos], iter);
iter = next_iter;
}
}
free (old_map);
}
static void
str_map_shrink (struct str_map *self)
{
if (self->shrink_lock)
return;
// The array should be at least 1/4 full
size_t new_alloc = self->alloc;
while (self->len < (new_alloc >> 2)
&& new_alloc >= (STR_MAP_MIN_ALLOC << 1))
new_alloc >>= 1;
if (new_alloc != self->alloc)
str_map_resize (self, new_alloc);
}
static void
str_map_set_real (struct str_map *self, const char *key, void *value)
{
uint64_t pos = str_map_pos (self, key);
struct str_map_link *iter = self->map[pos];
for (; iter; iter = iter->next)
{
if (strcmp (key, iter->key))
continue;
// Storing the same data doesn't destroy it
if (self->free && value != iter->data)
self->free (iter->data);
if (value)
{
iter->data = value;
return;
}
LIST_UNLINK (self->map[pos], iter);
free (iter);
self->len--;
str_map_shrink (self);
return;
}
if (!value)
return;
if (self->len >= self->alloc)
{
str_map_resize (self, self->alloc << 1);
pos = str_map_pos (self, key);
}
// Link in a new element for the given pair
size_t key_length = strlen (key);
struct str_map_link *link = xmalloc (sizeof *link + key_length + 1);
link->data = value;
link->key_length = key_length;
memcpy (link->key, key, key_length + 1);
LIST_PREPEND (self->map[pos], link);
self->len++;
}
static void
str_map_set (struct str_map *self, const char *key, void *value)
{
if (!self->key_xfrm)
{
str_map_set_real (self, key, value);
return;
}
char tmp[self->key_xfrm (NULL, key, 0) + 1];
self->key_xfrm (tmp, key, sizeof tmp);
str_map_set_real (self, tmp, value);
}
static void *
str_map_find_real (const struct str_map *self, const char *key)
{
struct str_map_link *iter = self->map[str_map_pos (self, key)];
for (; iter; iter = iter->next)
if (!strcmp (key, (const char *) iter + sizeof *iter))
return iter->data;
return NULL;
}
static void *
str_map_find (const struct str_map *self, const char *key)
{
if (!self->key_xfrm)
return str_map_find_real (self, key);
char tmp[self->key_xfrm (NULL, key, 0) + 1];
self->key_xfrm (tmp, key, sizeof tmp);
return str_map_find_real (self, tmp);
}
static void *
str_map_steal (struct str_map *self, const char *key)
{
void *value = str_map_find (self, key);
if (value)
{
str_map_free_fn free_saved = self->free;
self->free = NULL;
str_map_set (self, key, NULL);
self->free = free_saved;
}
return value;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// This iterator is intended for accessing and eventually adding links.
// Use `link' directly to access the data.
struct str_map_iter
{
const struct str_map *map; ///< The map we're iterating
size_t next_index; ///< Next table index to search
struct str_map_link *link; ///< Current link
};
static struct str_map_iter
str_map_iter_make (const struct str_map *map)
{
return (struct str_map_iter) { .map = map, .next_index = 0, .link = NULL };
}
static void *
str_map_iter_next (struct str_map_iter *self)
{
const struct str_map *map = self->map;
if (self->link)
self->link = self->link->next;
while (!self->link)
{
if (self->next_index >= map->alloc)
return NULL;
self->link = map->map[self->next_index++];
}
return self->link->data;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// This iterator is intended for accessing and eventually removing links.
// Use `link' directly to access the data.
struct str_map_unset_iter
{
struct str_map_iter iter; ///< Regular iterator
struct str_map_link *link; ///< Current link
struct str_map_link *next; ///< Next link
};
static struct str_map_unset_iter
str_map_unset_iter_make (struct str_map *map)
{
struct str_map_unset_iter self;
self.iter = str_map_iter_make (map);
map->shrink_lock = true;
(void) str_map_iter_next (&self.iter);
self.next = self.iter.link;
return self;
}
static void *
str_map_unset_iter_next (struct str_map_unset_iter *self)
{
if (!(self->link = self->next))
return NULL;
(void) str_map_iter_next (&self->iter);
self->next = self->iter.link;
return self->link->data;
}
static void
str_map_unset_iter_free (struct str_map_unset_iter *self)
{
// So that we don't have to store another non-const pointer
struct str_map *map = (struct str_map *) self->iter.map;
map->shrink_lock = false;
str_map_shrink (map);
}
// --- Asynchronous jobs -------------------------------------------------------
// For operations that can block execution but can be run independently on the
// rest of the program, such as getaddrinfo(), read(), write(), fsync().
//
// The async structure is meant to be extended for the various usages with
// new fields and provide an appropriate callback for its destruction.
//
// This is designed so that it can be used in other event loops than poller.
#ifdef LIBERTY_WANT_ASYNC
struct async;
typedef void (*async_fn) (struct async *);
struct async
{
LIST_HEADER (struct async)
struct async_manager *manager; ///< Our manager object
// "cancelled" may not be accessed or modified by the worker thread
pthread_t worker; ///< Worker thread ID
bool started; ///< Worker thread ID is valid
bool cancelled; ///< Task has been cancelled
async_fn execute; ///< Worker main function
async_fn dispatcher; ///< Main thread result dispatcher
async_fn destroy; ///< Destroys the whole object
};
struct async_manager
{
pthread_mutex_t lock; ///< Lock for the queues
struct async *running; ///< Queue of running jobs
struct async *finished; ///< Queue of completed/cancelled jobs
// It's upon the user to call async_manager_dispatch() to retry the delayed.
// It's somewhat questionable if this feature is of any use. Possibly if we
// provide a means of actively limiting the amount of running async jobs.
struct async *delayed; ///< Resource exhaustion queue
// We need the pipe in order to abort polling (instead of using EINTR)
pthread_cond_t finished_cond; ///< Signals that a task has finished
int finished_pipe[2]; ///< Signals that a task has finished
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static struct async
async_make (struct async_manager *manager)
{
return (struct async) { .manager = manager };
}
/// Only allowed from the main thread once the job has been started but before
/// the results have been dispatched
static void
async_cancel (struct async *self)
{
if (self->started)
soft_assert (!pthread_cancel (self->worker));
self->cancelled = true;
}
static void
async_cleanup (void *user_data)
{
struct async *self = user_data;
hard_assert (!pthread_mutex_lock (&self->manager->lock));
LIST_UNLINK (self->manager->running, self);
LIST_PREPEND (self->manager->finished, self);
hard_assert (!pthread_mutex_unlock (&self->manager->lock));
hard_assert (!pthread_cond_broadcast (&self->manager->finished_cond));
hard_assert (write (self->manager->finished_pipe[1], "", 1) > 0);
}
static void *
async_routine (void *user_data)
{
// Beware that we mustn't trigger any cancellation point before we set up
// the cleanup handler, otherwise we'd need to disable it first
struct async *self = user_data;
pthread_cleanup_push (async_cleanup, self);
self->execute (self);
pthread_cleanup_pop (true);
return NULL;
}
static bool
async_run (struct async *self)
{
hard_assert (!pthread_mutex_lock (&self->manager->lock));
LIST_PREPEND (self->manager->running, self);
hard_assert (!pthread_mutex_unlock (&self->manager->lock));
// Block all signals so that the new thread doesn't receive any (inherited)
sigset_t all_blocked, old_blocked;
hard_assert (!sigfillset (&all_blocked));
hard_assert (!pthread_sigmask (SIG_SETMASK, &all_blocked, &old_blocked));
int error = pthread_create (&self->worker, NULL, async_routine, self);
// Now that we've created the thread, resume signal processing as usual
hard_assert (!pthread_sigmask (SIG_SETMASK, &old_blocked, NULL));
if (error)
{
hard_assert (error == EAGAIN);
hard_assert (!pthread_mutex_lock (&self->manager->lock));
LIST_UNLINK (self->manager->running, self);
hard_assert (!pthread_mutex_unlock (&self->manager->lock));
// FIXME: we probably want to have some kind of a limit on the queue
LIST_PREPEND (self->manager->delayed, self);
return false;
}
return (self->started = true);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static struct async *
async_manager_dispatch_fetch (struct async_manager *self)
{
// We don't want to hold the mutex for too long, mainly to prevent
// a deadlock when trying to add an async job while dispatching another
hard_assert (!pthread_mutex_lock (&self->lock));
struct async *result;
if ((result = self->finished))
LIST_UNLINK (self->finished, result);
hard_assert (!pthread_mutex_unlock (&self->lock));
return result;
}
static void
async_manager_dispatch (struct async_manager *self)
{
char dummy;
while (read (self->finished_pipe[0], &dummy, 1) > 0)
; // Just emptying the signalling pipe
struct async *iter;
while ((iter = async_manager_dispatch_fetch (self)))
{
// The thread has finished execution already
soft_assert (!pthread_join (iter->worker, NULL));
if (iter->dispatcher && !iter->cancelled)
iter->dispatcher (iter);
if (iter->destroy)
iter->destroy (iter);
}
LIST_FOR_EACH (struct async, iter, self->delayed)
{
LIST_UNLINK (self->delayed, iter);
if (iter->cancelled)
{
if (iter->destroy)
iter->destroy (iter);
}
else if (!async_run (iter))
break;
}
}
static void
async_manager_cancel_all (struct async_manager *self)
{
hard_assert (!pthread_mutex_lock (&self->lock));
// Cancel all running jobs
LIST_FOR_EACH (struct async, iter, self->running)
soft_assert (!pthread_cancel (iter->worker));
// Wait until no jobs are running anymore (we need to release the lock
// here so that worker threads can move their jobs to the finished queue)
while (self->running)
hard_assert (!pthread_cond_wait (&self->finished_cond, &self->lock));
// Mark everything cancelled so that it's not actually dispatched
LIST_FOR_EACH (struct async, iter, self->finished)
iter->cancelled = true;
LIST_FOR_EACH (struct async, iter, self->delayed)
iter->cancelled = true;
hard_assert (!pthread_mutex_unlock (&self->lock));
async_manager_dispatch (self);
}
static struct async_manager
async_manager_make (void)
{
struct async_manager self = {};
hard_assert (!pthread_mutex_init (&self.lock, NULL));
hard_assert (!pthread_cond_init (&self.finished_cond, NULL));
hard_assert (!pipe (self.finished_pipe));
hard_assert (set_blocking (self.finished_pipe[0], false));
set_cloexec (self.finished_pipe[0]);
set_cloexec (self.finished_pipe[1]);
return self;
}
static void
async_manager_free (struct async_manager *self)
{
async_manager_cancel_all (self);
hard_assert (!pthread_cond_destroy (&self->finished_cond));
hard_assert (!pthread_mutex_destroy (&self->lock));
xclose (self->finished_pipe[0]);
xclose (self->finished_pipe[1]);
}
#endif // LIBERTY_WANT_ASYNC
// --- Event loop --------------------------------------------------------------
#ifdef LIBERTY_WANT_POLLER
// Basically the poor man's GMainLoop/libev/libuv. It might make some sense
// to instead use those tested and proven libraries but we don't need much
// and it's interesting to implement.
// We sacrifice some memory to allow for O(1) and O(log n) operations.
typedef void (*poller_fd_fn) (const struct pollfd *, void *);
typedef void (*poller_timer_fn) (void *);
typedef void (*poller_idle_fn) (void *);
#define POLLER_MIN_ALLOC 16
struct poller_timer
{
struct poller_timers *timers; ///< The timers part of our poller
ssize_t index; ///< Where we are in the array, or -1
int64_t when; ///< When is the timer to expire
poller_timer_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller_fd
{
struct poller *poller; ///< Our poller
ssize_t index; ///< Where we are in the array, or -1
int fd; ///< Our file descriptor
short events; ///< The poll() events we registered for
// Make triple sure that no forked child is keeping the FD,
// otherwise we may access freed memory on Linux (poor epoll design)
bool closed; ///< Whether fd has been closed already
poller_fd_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
struct poller_idle
{
LIST_HEADER (struct poller_idle)
struct poller *poller; ///< Our poller
bool active; ///< Whether we're on the list
poller_idle_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// The heap could definitely be made faster but we'll prefer simplicity
struct poller_timers
{
struct poller_timer **heap; ///< Min-heap of timers
size_t len; ///< Number of scheduled timers
size_t alloc; ///< Number of timers allocated
};
static struct poller_timers
poller_timers_make (void)
{
struct poller_timers self;
self.alloc = POLLER_MIN_ALLOC;
self.len = 0;
self.heap = xmalloc (self.alloc * sizeof *self.heap);
return self;
}
static void
poller_timers_free (struct poller_timers *self)
{
free (self->heap);
}
static int64_t
poller_timers_get_current_time (void)
{
#ifdef _POSIX_TIMERS
struct timespec tp;
hard_assert (clock_gettime (CLOCK_BEST, &tp) != -1);
return (int64_t) tp.tv_sec * 1000 + (int64_t) tp.tv_nsec / 1000000;
#else
struct timeval tp;
gettimeofday (&tp, NULL);
return (int64_t) tp.tv_sec * 1000 + (int64_t) tp.tv_usec / 1000;
#endif
}
static void
poller_timers_heapify_down (struct poller_timers *self, size_t index)
{
typedef struct poller_timer *timer_t;
timer_t *end = self->heap + self->len;
while (true)
{
timer_t *parent = self->heap + index;
timer_t *left = self->heap + 2 * index + 1;
timer_t *right = self->heap + 2 * index + 2;
timer_t *lowest = parent;
if (left < end && (*left) ->when < (*lowest)->when)
lowest = left;
if (right < end && (*right)->when < (*lowest)->when)
lowest = right;
if (parent == lowest)
break;
timer_t tmp = *parent;
*parent = *lowest;
*lowest = tmp;
(*parent)->index = parent - self->heap;
(*lowest)->index = lowest - self->heap;
index = lowest - self->heap;
}
}
static void
poller_timers_remove_at_index (struct poller_timers *self, size_t index)
{
hard_assert (index < self->len);
self->heap[index]->index = -1;
if (index == --self->len)
return;
self->heap[index] = self->heap[self->len];
self->heap[index]->index = index;
poller_timers_heapify_down (self, index);
}
static void
poller_timers_dispatch (struct poller_timers *self)
{
int64_t now = poller_timers_get_current_time ();
while (self->len && self->heap[0]->when <= now)
{
struct poller_timer *timer = self->heap[0];
poller_timers_remove_at_index (self, 0);
timer->dispatcher (timer->user_data);
}
}
static void
poller_timers_heapify_up (struct poller_timers *self, size_t index)
{
while (index != 0)
{
size_t parent = (index - 1) / 2;
if (self->heap[parent]->when <= self->heap[index]->when)
break;
struct poller_timer *tmp = self->heap[parent];
self->heap[parent] = self->heap[index];
self->heap[index] = tmp;
self->heap[parent]->index = parent;
self->heap[index] ->index = index;
index = parent;
}
}
static void
poller_timers_set (struct poller_timers *self, struct poller_timer *timer)
{
hard_assert (timer->timers == self);
if (timer->index != -1)
{
poller_timers_heapify_down (self, timer->index);
poller_timers_heapify_up (self, timer->index);
return;
}
if (self->len == self->alloc)
self->heap = xreallocarray (self->heap,
self->alloc <<= 1, sizeof *self->heap);
self->heap[self->len] = timer;
timer->index = self->len;
poller_timers_heapify_up (self, self->len++);
}
static int
poller_timers_get_poll_timeout (const struct poller_timers *self)
{
if (!self->len)
return -1;
int64_t timeout = self->heap[0]->when - poller_timers_get_current_time ();
if (timeout <= 0)
return 0;
if (timeout > INT_MAX)
return INT_MAX;
return timeout;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_idle_dispatch (const struct poller_idle *list)
{
const struct poller_idle *iter, *next;
for (iter = list; iter; iter = next)
{
next = iter->next;
iter->dispatcher (iter->user_data);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct poller_common
{
struct poller_timers timers; ///< Timeouts
struct poller_idle *idle; ///< Idle events
#ifdef LIBERTY_WANT_ASYNC
struct async_manager async; ///< Asynchronous jobs
struct poller_fd async_event; ///< Asynchronous jobs have finished
#endif // LIBERTY_WANT_ASYNC
};
static void poller_common_init (struct poller_common *, struct poller *);
static void poller_common_free (struct poller_common *);
static int poller_common_get_timeout (const struct poller_common *);
static void poller_common_dispatch (struct poller_common *);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#ifdef __linux__
#include
struct poller
{
int epoll_fd; ///< The epoll FD
struct poller_fd **fds; ///< Information associated with each FD
int *dummy; ///< For poller_remove_from_dispatch()
struct epoll_event *revents; ///< Output array for epoll_wait()
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
struct poller_common common; ///< Stuff common to all backends
int revents_len; ///< Number of entries in `revents'
};
static void
poller_init (struct poller *self)
{
self->epoll_fd = epoll_create (POLLER_MIN_ALLOC);
hard_assert (self->epoll_fd != -1);
set_cloexec (self->epoll_fd);
self->len = 0;
self->alloc = POLLER_MIN_ALLOC;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->dummy = xcalloc (self->alloc, sizeof *self->dummy);
self->revents = xcalloc (self->alloc, sizeof *self->revents);
self->revents_len = 0;
poller_common_init (&self->common, self);
}
static void
poller_free (struct poller *self)
{
for (size_t i = 0; i < self->len; i++)
{
struct poller_fd *fd = self->fds[i];
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, fd->fd, (void *) "") != -1);
}
poller_common_free (&self->common);
xclose (self->epoll_fd);
free (self->fds);
free (self->dummy);
free (self->revents);
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
hard_assert (self->alloc != 0);
self->revents = xreallocarray
(self->revents, sizeof *self->revents, self->alloc);
self->fds = xreallocarray
(self->fds, sizeof *self->fds, self->alloc);
self->dummy = xreallocarray
(self->dummy, sizeof *self->dummy, self->alloc);
}
static short
poller_epoll_to_poll_events (uint32_t events)
{
short result = 0;
if (events & EPOLLIN) result |= POLLIN;
if (events & EPOLLOUT) result |= POLLOUT;
if (events & EPOLLERR) result |= POLLERR;
if (events & EPOLLHUP) result |= POLLHUP;
if (events & EPOLLPRI) result |= POLLPRI;
return result;
}
static uint32_t
poller_poll_to_epoll_events (short events)
{
uint32_t result = 0;
if (events & POLLIN) result |= EPOLLIN;
if (events & POLLOUT) result |= EPOLLOUT;
if (events & POLLERR) result |= EPOLLERR;
if (events & POLLHUP) result |= EPOLLHUP;
if (events & POLLPRI) result |= EPOLLPRI;
return result;
}
static void
poller_set (struct poller *self, struct poller_fd *fd)
{
hard_assert (fd->poller == self);
bool modifying = true;
if (fd->index == -1)
{
poller_ensure_space (self);
self->fds[fd->index = self->len++] = fd;
modifying = false;
}
struct epoll_event event;
event.events = poller_poll_to_epoll_events (fd->events);
event.data.ptr = fd;
hard_assert (epoll_ctl (self->epoll_fd,
modifying ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, fd->fd, &event) != -1);
}
#define poller_post_fork(self)
static int
poller_compare_fds (const void *ax, const void *bx)
{
const struct epoll_event *ay = ax, *by = bx;
struct poller_fd *a = ay->data.ptr, *b = by->data.ptr;
return a->fd - b->fd;
}
static void
poller_remove_from_dispatch (struct poller *self, const struct poller_fd *fd)
{
if (!self->revents_len)
return;
struct epoll_event key = { .data.ptr = (void *) fd }, *fd_event;
if ((fd_event = bsearch (&key, self->revents,
self->revents_len, sizeof *self->revents, poller_compare_fds)))
{
fd_event->events = -1;
// Don't let any further bsearch()'s touch possibly freed memory
int *dummy = self->dummy + (fd_event - self->revents);
*dummy = fd->fd;
fd_event->data.ptr =
(uint8_t *) dummy - offsetof (struct poller_fd, fd);
}
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_fd *fd = self->fds[index];
fd->index = -1;
poller_remove_from_dispatch (self, fd);
if (!fd->closed)
hard_assert (epoll_ctl (self->epoll_fd,
EPOLL_CTL_DEL, fd->fd, (void *) "") != -1);
if (index != --self->len)
{
self->fds[index] = self->fds[self->len];
self->fds[index]->index = index;
}
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (!self->revents_len);
int n_fds;
do
n_fds = epoll_wait (self->epoll_fd, self->revents, self->alloc,
poller_common_get_timeout (&self->common));
while (n_fds == -1 && errno == EINTR);
if (n_fds == -1)
exit_fatal ("%s: %s", "epoll", strerror (errno));
// Sort them by file descriptor number for binary search
qsort (self->revents, n_fds, sizeof *self->revents, poller_compare_fds);
self->revents_len = n_fds;
poller_common_dispatch (&self->common);
for (int i = 0; i < n_fds; i++)
{
struct epoll_event *revents = self->revents + i;
if (revents->events == (uint32_t) -1)
continue;
struct poller_fd *fd = revents->data.ptr;
hard_assert (fd->index != -1);
struct pollfd pfd;
pfd.fd = fd->fd;
pfd.revents = poller_epoll_to_poll_events (revents->events);
pfd.events = fd->events;
fd->dispatcher (&pfd, fd->user_data);
}
self->revents_len = 0;
}
// Sort of similar to the epoll version. Let's hope Darwin isn't broken,
// that'd mean reimplementing this in terms of select() just because of Crapple.
#elif defined (BSD) || defined (__APPLE__)
#include
#include
#include
struct poller
{
int kqueue_fd; ///< The kqueue FD
struct poller_fd **fds; ///< Information associated with each FD
struct kevent *revents; ///< Output array for kevent()
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
struct poller_common common; ///< Stuff common to all backends
int revents_len; ///< Number of entries in `revents'
};
static void
poller_init (struct poller *self)
{
self->kqueue_fd = kqueue ();
hard_assert (self->kqueue_fd != -1);
set_cloexec (self->kqueue_fd);
self->len = 0;
self->alloc = POLLER_MIN_ALLOC;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->revents = xcalloc (self->alloc, sizeof *self->revents);
self->revents_len = 0;
poller_common_init (&self->common, self);
}
static void
poller_free (struct poller *self)
{
xclose (self->kqueue_fd);
free (self->fds);
free (self->revents);
poller_common_free (&self->common);
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
hard_assert (self->alloc != 0);
self->revents = xreallocarray
(self->revents, sizeof *self->revents, self->alloc);
self->fds = xreallocarray
(self->fds, sizeof *self->fds, self->alloc);
}
static void
poller_set (struct poller *self, struct poller_fd *fd)
{
hard_assert (fd->poller == self);
if (fd->index == -1)
{
poller_ensure_space (self);
self->fds[fd->index = self->len++] = fd;
}
// We have to watch for readability and writeability separately;
// to simplify matters, we can just disable what we don't desire to receive
struct kevent changes[2];
EV_SET (&changes[0], fd->fd, EVFILT_READ, EV_ADD, 0, 0, fd);
EV_SET (&changes[1], fd->fd, EVFILT_WRITE, EV_ADD, 0, 0, fd);
changes[0].flags |= (fd->events & POLLIN) ? EV_ENABLE : EV_DISABLE;
changes[1].flags |= (fd->events & POLLOUT) ? EV_ENABLE : EV_DISABLE;
if (kevent (self->kqueue_fd,
changes, N_ELEMENTS (changes), NULL, 0, NULL) == -1)
exit_fatal ("%s: %s", "kevent", strerror (errno));
}
static void
poller_post_fork (struct poller *self)
{
// The kqueue FD isn't preserved across forks, need to recreate it
self->kqueue_fd = kqueue ();
hard_assert (self->kqueue_fd != -1);
set_cloexec (self->kqueue_fd);
for (size_t i = 0; i < self->len; i++)
poller_set (self, self->fds[i]);
}
static int
poller_compare_fds (const void *ax, const void *bx)
{
const struct kevent *ay = ax, *by = bx;
return (int) ay->ident - (int) by->ident;
}
static void
poller_dummify (struct kevent *fd_event)
{
fd_event->flags = USHRT_MAX;
}
static void
poller_remove_from_dispatch (struct poller *self, const struct poller_fd *fd)
{
if (!self->revents_len)
return;
struct kevent key = { .ident = fd->fd }, *fd_event;
if (!(fd_event = bsearch (&key, self->revents,
self->revents_len, sizeof *self->revents, poller_compare_fds)))
return;
// The FD may appear twice -- both for reading and writing
int index = fd_event - self->revents;
if (index > 0
&& !poller_compare_fds (&key, fd_event - 1))
poller_dummify (fd_event - 1);
poller_dummify (fd_event);
if (index < self->revents_len - 1
&& !poller_compare_fds (&key, fd_event + 1))
poller_dummify (fd_event + 1);
}
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_fd *fd = self->fds[index];
fd->index = -1;
poller_remove_from_dispatch (self, fd);
if (index != --self->len)
{
self->fds[index] = self->fds[self->len];
self->fds[index]->index = index;
}
if (fd->closed)
return;
struct kevent changes[2];
EV_SET (&changes[0], fd->fd, EVFILT_READ, EV_DELETE, 0, 0, fd);
EV_SET (&changes[1], fd->fd, EVFILT_WRITE, EV_DELETE, 0, 0, fd);
if (kevent (self->kqueue_fd,
changes, N_ELEMENTS (changes), NULL, 0, NULL) == -1)
exit_fatal ("%s: %s", "kevent", strerror (errno));
}
static struct timespec
poller_timeout_to_timespec (int ms)
{
return (struct timespec)
{
.tv_sec = ms / 1000,
.tv_nsec = (ms % 1000) * 1000 * 1000
};
}
static short
poller_kqueue_to_poll_events (struct kevent *event)
{
short result = 0;
if (event->filter == EVFILT_READ)
{
result |= POLLIN;
if ((event->flags & EV_EOF) && event->fflags)
result |= POLLERR;
}
if (event->filter == EVFILT_WRITE) result |= POLLOUT;
if (event->flags & EV_EOF) result |= POLLHUP;
return result;
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (!self->revents_len);
int n_fds;
do
{
int timeout = poller_common_get_timeout (&self->common);
struct timespec ts = poller_timeout_to_timespec (timeout);
n_fds = kevent (self->kqueue_fd,
NULL, 0, self->revents, self->len, timeout < 0 ? NULL : &ts);
}
while (n_fds == -1 && errno == EINTR);
if (n_fds == -1)
exit_fatal ("%s: %s", "kevent", strerror (errno));
// Sort them by file descriptor number for binary search
qsort (self->revents, n_fds, sizeof *self->revents, poller_compare_fds);
self->revents_len = n_fds;
poller_common_dispatch (&self->common);
for (int i = 0; i < n_fds; i++)
{
struct kevent *event = self->revents + i;
if (event->flags == USHRT_MAX)
continue;
struct poller_fd *fd = event->udata;
hard_assert (fd->index != -1);
struct pollfd pfd;
pfd.fd = fd->fd;
pfd.revents = poller_kqueue_to_poll_events (event);
pfd.events = fd->events;
// Read and write events are separate in the kqueue API -- merge them
int sibling = 1;
while (i + sibling < n_fds
&& !poller_compare_fds (event, event + sibling))
pfd.revents |= poller_kqueue_to_poll_events (event + sibling++);
if ((pfd.revents & POLLHUP) && (pfd.revents & POLLOUT))
pfd.revents &= ~POLLOUT;
i += --sibling;
fd->dispatcher (&pfd, fd->user_data);
}
self->revents_len = 0;
}
#else // ! BSD
struct poller
{
struct pollfd *fds; ///< Polled descriptors
struct poller_fd **fds_data; ///< Additional information for each FD
size_t len; ///< Number of polled descriptors
size_t alloc; ///< Number of entries allocated
struct poller_common common; ///< Stuff common to all backends
int dispatch_next; ///< The next dispatched FD or -1
};
static void
poller_init (struct poller *self)
{
self->alloc = POLLER_MIN_ALLOC;
self->len = 0;
self->fds = xcalloc (self->alloc, sizeof *self->fds);
self->fds_data = xcalloc (self->alloc, sizeof *self->fds_data);
poller_common_init (&self->common, self);
self->dispatch_next = -1;
}
static void
poller_free (struct poller *self)
{
free (self->fds);
free (self->fds_data);
poller_common_free (&self->common);
}
static void
poller_ensure_space (struct poller *self)
{
if (self->len < self->alloc)
return;
self->alloc <<= 1;
self->fds = xreallocarray (self->fds, sizeof *self->fds, self->alloc);
self->fds_data = xreallocarray
(self->fds_data, sizeof *self->fds_data, self->alloc);
}
static void
poller_set (struct poller *self, struct poller_fd *fd)
{
hard_assert (fd->poller == self);
if (fd->index == -1)
{
poller_ensure_space (self);
self->fds_data[fd->index = self->len++] = fd;
}
struct pollfd *new_entry = self->fds + fd->index;
memset (new_entry, 0, sizeof *new_entry);
new_entry->fd = fd->fd;
new_entry->events = fd->events;
}
#define poller_post_fork(self)
static void
poller_remove_at_index (struct poller *self, size_t index)
{
hard_assert (index < self->len);
struct poller_fd *fd = self->fds_data[index];
fd->index = -1;
if (index == --self->len)
return;
// Make sure that we don't disrupt the dispatch loop; kind of crude
if ((int) index < self->dispatch_next)
{
memmove (self->fds + index, self->fds + index + 1,
(self->len - index) * sizeof *self->fds);
memmove (self->fds_data + index, self->fds_data + index + 1,
(self->len - index) * sizeof *self->fds_data);
for (size_t i = index; i < self->len; i++)
self->fds_data[i]->index = i;
self->dispatch_next--;
}
else
{
self->fds[index] = self->fds [self->len];
self->fds_data[index] = self->fds_data[self->len];
self->fds_data[index]->index = index;
}
}
static void
poller_run (struct poller *self)
{
// Not reentrant
hard_assert (self->dispatch_next == -1);
int result;
do
result = poll (self->fds, self->len,
poller_common_get_timeout (&self->common));
while (result == -1 && errno == EINTR);
if (result == -1)
exit_fatal ("%s: %s", "poll", strerror (errno));
poller_common_dispatch (&self->common);
for (int i = 0; i < (int) self->len; )
{
struct pollfd pfd = self->fds[i];
struct poller_fd *fd = self->fds_data[i];
self->dispatch_next = ++i;
if (pfd.revents)
fd->dispatcher (&pfd, fd->user_data);
i = self->dispatch_next;
}
self->dispatch_next = -1;
}
#endif // ! BSD
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static struct poller_timer
poller_timer_make (struct poller *poller)
{
return (struct poller_timer)
{ .timers = &poller->common.timers, .index = -1, };
}
static void
poller_timer_set (struct poller_timer *self, int timeout_ms)
{
self->when = poller_timers_get_current_time () + timeout_ms;
poller_timers_set (self->timers, self);
}
static bool
poller_timer_is_active (const struct poller_timer *self)
{
return self->index != -1;
}
static void
poller_timer_reset (struct poller_timer *self)
{
if (self->index != -1)
poller_timers_remove_at_index (self->timers, self->index);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static struct poller_idle
poller_idle_make (struct poller *poller)
{
return (struct poller_idle) { .poller = poller };
}
static void
poller_idle_set (struct poller_idle *self)
{
if (self->active)
return;
LIST_PREPEND (self->poller->common.idle, self);
self->active = true;
}
static void
poller_idle_reset (struct poller_idle *self)
{
if (!self->active)
return;
LIST_UNLINK (self->poller->common.idle, self);
self->prev = NULL;
self->next = NULL;
self->active = false;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static struct poller_fd
poller_fd_make (struct poller *poller, int fd)
{
return (struct poller_fd) { .poller = poller, .index = -1, .fd = fd };
}
static void
poller_fd_set (struct poller_fd *self, short events)
{
self->events = events;
poller_set (self->poller, self);
}
static void
poller_fd_reset (struct poller_fd *self)
{
if (self->index != -1)
poller_remove_at_index (self->poller, self->index);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static void
poller_common_dummy_dispatcher (const struct pollfd *pfd, void *user_data)
{
(void) pfd;
(void) user_data;
// The async manager will empty the pipe when we invoke dispatch
}
static void
poller_common_init (struct poller_common *self, struct poller *poller)
{
self->timers = poller_timers_make ();
self->idle = NULL;
#ifdef LIBERTY_WANT_ASYNC
self->async = async_manager_make ();
self->async_event = poller_fd_make (poller, self->async.finished_pipe[0]);
poller_fd_set (&self->async_event, POLLIN);
self->async_event.dispatcher = poller_common_dummy_dispatcher;
self->async_event.user_data = self;
#else // ! LIBERTY_WANT_ASYNC
(void) poller;
#endif // ! LIBERTY_WANT_ASYNC
}
static void
poller_common_free (struct poller_common *self)
{
poller_timers_free (&self->timers);
#ifdef LIBERTY_WANT_ASYNC
async_manager_free (&self->async);
#endif // LIBERTY_WANT_ASYNC
}
static int
poller_common_get_timeout (const struct poller_common *self)
{
if (self->idle)
return 0;
int timeout = poller_timers_get_poll_timeout (&self->timers);
#ifdef LIBERTY_WANT_ASYNC
// This is completely arbitrary, in general we have no idea when to retry,
// however one second doesn't sound like a particularly bad number
if (self->async.delayed)
timeout = MIN (timeout, 1000);
#endif // LIBERTY_WANT_ASYNC
return timeout;
}
static void
poller_common_dispatch (struct poller_common *self)
{
poller_timers_dispatch (&self->timers);
poller_idle_dispatch (self->idle);
#ifdef LIBERTY_WANT_ASYNC
async_manager_dispatch (&self->async);
#endif // LIBERTY_WANT_ASYNC
}
#endif // LIBERTY_WANT_POLLER
// --- Asynchronous jobs -------------------------------------------------------
#ifdef LIBERTY_WANT_ASYNC
/// The callback takes ownership of the returned list
typedef void (*async_getaddrinfo_fn) (int, struct addrinfo *, void *);
struct async_getaddrinfo
{
struct async async; ///< Parent object
int gai_result; ///< Direct result from getaddrinfo()
char *host; ///< gai() argument: host
char *service; ///< gai() argument: service
struct addrinfo hints; ///< gai() argument: hints
struct addrinfo *result; ///< Resulting addresses from gai()
async_getaddrinfo_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
static void
async_getaddrinfo_execute (struct async *async)
{
struct async_getaddrinfo *self = (struct async_getaddrinfo *) async;
self->gai_result =
getaddrinfo (self->host, self->service, &self->hints, &self->result);
}
static void
async_getaddrinfo_dispatch (struct async *async)
{
struct async_getaddrinfo *self = (struct async_getaddrinfo *) async;
self->dispatcher (self->gai_result, self->result, self->user_data);
self->result = NULL;
}
static void
async_getaddrinfo_destroy (struct async *async)
{
struct async_getaddrinfo *self = (struct async_getaddrinfo *) async;
free (self->host);
free (self->service);
if (self->result)
freeaddrinfo (self->result);
free (self);
}
static struct async_getaddrinfo *
async_getaddrinfo (struct async_manager *manager,
const char *host, const char *service, const struct addrinfo *hints)
{
struct async_getaddrinfo *self = xcalloc (1, sizeof *self);
self->async = async_make (manager);
if (host) self->host = xstrdup (host);
if (service) self->service = xstrdup (service);
if (hints) memcpy (&self->hints, hints, sizeof *hints);
self->async.execute = async_getaddrinfo_execute;
self->async.dispatcher = async_getaddrinfo_dispatch;
self->async.destroy = async_getaddrinfo_destroy;
async_run (&self->async);
return self;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
typedef void (*async_getnameinfo_fn) (int, char *, char *, void *);
struct async_getnameinfo
{
struct async async; ///< Parent object
int gni_result; ///< Direct result from getnameinfo()
char host[NI_MAXHOST]; ///< gni() result: host name
char service[NI_MAXSERV]; ///< gni() result: service name
struct sockaddr *address; ///< gni() argument: address
socklen_t address_len; ///< Size of the address
int flags; ///< gni() argument: flags
async_getnameinfo_fn dispatcher; ///< Event dispatcher
void *user_data; ///< User data
};
static void
async_getnameinfo_execute (struct async *async)
{
struct async_getnameinfo *self = (struct async_getnameinfo *) async;
self->gni_result = getnameinfo (self->address, self->address_len,
self->host, sizeof self->host,
self->service, sizeof self->service, self->flags);
}
static void
async_getnameinfo_dispatch (struct async *async)
{
struct async_getnameinfo *self = (struct async_getnameinfo *) async;
self->dispatcher (self->gni_result, self->host, self->service,
self->user_data);
}
static void
async_getnameinfo_destroy (struct async *async)
{
struct async_getnameinfo *self = (struct async_getnameinfo *) async;
free (self->address);
free (self);
}
static struct async_getnameinfo *
async_getnameinfo (struct async_manager *manager,
const struct sockaddr *sa, socklen_t sa_len, int flags)
{
struct async_getnameinfo *self = xcalloc (1, sizeof *self);
self->async = async_make (manager);
self->address = memcpy (xmalloc (sa_len), sa, sa_len);
self->address_len = sa_len;
self->flags = flags;
self->async.execute = async_getnameinfo_execute;
self->async.dispatcher = async_getnameinfo_dispatch;
self->async.destroy = async_getnameinfo_destroy;
async_run (&self->async);
return self;
}
#endif // LIBERTY_WANT_ASYNC
// --- libuv-style write adaptor -----------------------------------------------
// Makes it possible to use iovec to write multiple data chunks at once.
struct write_req
{
LIST_HEADER (struct write_req)
struct iovec data; ///< Data to be written
};
struct write_queue
{
struct write_req *head; ///< The head of the queue
struct write_req *tail; ///< The tail of the queue
size_t head_offset; ///< Offset into the head
size_t len;
};
static struct write_queue
write_queue_make (void)
{
return (struct write_queue) {};
}
static void
write_queue_free (struct write_queue *self)
{
LIST_FOR_EACH (struct write_req, iter, self->head)
{
free (iter->data.iov_base);
free (iter);
}
}
static void
write_queue_add (struct write_queue *self, struct write_req *req)
{
LIST_APPEND_WITH_TAIL (self->head, self->tail, req);
self->len++;
}
static void
write_queue_processed (struct write_queue *self, size_t len)
{
while (self->head
&& self->head_offset + len >= self->head->data.iov_len)
{
struct write_req *head = self->head;
len -= (head->data.iov_len - self->head_offset);
self->head_offset = 0;
LIST_UNLINK_WITH_TAIL (self->head, self->tail, head);
self->len--;
free (head->data.iov_base);
free (head);
}
self->head_offset += len;
}
static bool
write_queue_is_empty (const struct write_queue *self)
{
return self->head == NULL;
}
// --- Message reader ----------------------------------------------------------
struct msg_reader
{
struct str buf; ///< Input buffer
uint64_t offset; ///< Current offset in the buffer
};
static struct msg_reader
msg_reader_make (void)
{
return (struct msg_reader) { .buf = str_make (), .offset = 0 };
}
static void
msg_reader_free (struct msg_reader *self)
{
str_free (&self->buf);
}
static void
msg_reader_compact (struct msg_reader *self)
{
str_remove_slice (&self->buf, 0, self->offset);
self->offset = 0;
}
static void
msg_reader_feed (struct msg_reader *self, const void *data, size_t len)
{
// TODO: have some mechanism to prevent flooding
msg_reader_compact (self);
str_append_data (&self->buf, data, len);
}
static void *
msg_reader_get (struct msg_reader *self, size_t *len)
{
// Try to read in the length of the message
if (self->offset + sizeof (uint64_t) > self->buf.len)
return NULL;
uint8_t *x = (uint8_t *) self->buf.str + self->offset;
uint64_t msg_len = peek_u64be (x);
if (msg_len < sizeof msg_len)
{
// The message is shorter than its header
// TODO: have some mechanism to report errors
return NULL;
}
if (self->offset + msg_len < self->offset)
{
// Trying to read an insane amount of data but whatever
msg_reader_compact (self);
return NULL;
}
// Check if we've got the full message in the buffer and return it
if (self->offset + msg_len > self->buf.len)
return NULL;
// We have to subtract the header from the reported length
void *data = self->buf.str + self->offset + sizeof msg_len;
self->offset += msg_len;
*len = msg_len - sizeof msg_len;
return data;
}
// --- Message unpacker --------------------------------------------------------
struct msg_unpacker
{
const char *data;
size_t offset;
size_t len;
};
static struct msg_unpacker
msg_unpacker_make (const void *data, size_t len)
{
return (struct msg_unpacker) { .data = data, .len = len, .offset = 0 };
}
static size_t
msg_unpacker_get_available (const struct msg_unpacker *self)
{
return self->len - self->offset;
}
#define UNPACKER_INT_BEGIN \
if (self->len - self->offset < sizeof *value) \
return false; \
uint8_t *x = (uint8_t *) self->data + self->offset; \
self->offset += sizeof *value;
static bool
msg_unpacker_u8 (struct msg_unpacker *self, uint8_t *value)
{
UNPACKER_INT_BEGIN
*value = x[0];
return true;
}
static bool
msg_unpacker_u16 (struct msg_unpacker *self, uint16_t *value)
{
UNPACKER_INT_BEGIN
*value = peek_u16be (x);
return true;
}
static bool
msg_unpacker_u32 (struct msg_unpacker *self, uint32_t *value)
{
UNPACKER_INT_BEGIN
*value = peek_u32be (x);
return true;
}
static bool
msg_unpacker_u64 (struct msg_unpacker *self, uint64_t *value)
{
UNPACKER_INT_BEGIN
*value = peek_u64be (x);
return true;
}
#define msg_unpacker_i8(self, value) \
msg_unpacker_u8 ((self), (uint8_t *) (value))
#define msg_unpacker_i16(self, value) \
msg_unpacker_u16 ((self), (uint16_t *) (value))
#define msg_unpacker_i32(self, value) \
msg_unpacker_u32 ((self), (uint32_t *) (value))
#define msg_unpacker_i64(self, value) \
msg_unpacker_u64 ((self), (uint64_t *) (value))
#undef UNPACKER_INT_BEGIN
// --- Message packer and writer -----------------------------------------------
// Use str_pack_*() or other methods to append to the internal buffer, then
// flush it to get a nice frame. Handy for iovec.
struct msg_writer
{
struct str buf; ///< Holds the message data
};
static struct msg_writer
msg_writer_make (void)
{
struct msg_writer self = { .buf = str_make () };
// Placeholder for message length
str_append_data (&self.buf, "\x00\x00\x00\x00" "\x00\x00\x00\x00", 8);
return self;
}
static void *
msg_writer_flush (struct msg_writer *self, size_t *len)
{
// Update the message length
uint64_t x = self->buf.len;
uint8_t tmp[8] =
{ x >> 56, x >> 48, x >> 40, x >> 32, x >> 24, x >> 16, x >> 8, x };
memcpy (self->buf.str, tmp, sizeof tmp);
*len = x;
return str_steal (&self->buf);
}
// --- ASCII -------------------------------------------------------------------
#define TRIVIAL_STRXFRM(name, fn) \
static size_t \
name (char *dest, const char *src, size_t n) \
{ \
size_t len = strlen (src); \
while (n-- && (*dest++ = (fn) (*src++))) \
; \
return len; \
}
static int
tolower_ascii (int c)
{
return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
}
static int
toupper_ascii (int c)
{
return c >= 'a' && c <= 'z' ? c - ('a' - 'A') : c;
}
TRIVIAL_STRXFRM (tolower_ascii_strxfrm, tolower_ascii)
TRIVIAL_STRXFRM (toupper_ascii_strxfrm, toupper_ascii)
static int
strcasecmp_ascii (const char *a, const char *b)
{
int x;
while (*a || *b)
if ((x = tolower_ascii (*(const unsigned char *) a++)
- tolower_ascii (*(const unsigned char *) b++)))
return x;
return 0;
}
static int
strncasecmp_ascii (const char *a, const char *b, size_t n)
{
int x;
while (n-- && (*a || *b))
if ((x = tolower_ascii (*(const unsigned char *) a++)
- tolower_ascii (*(const unsigned char *) b++)))
return x;
return 0;
}
static bool
iscntrl_ascii (int c)
{
return (c >= 0 && c < 32) || c == 0x7f;
}
static bool
isalpha_ascii (int c)
{
c &= ~32;
return c >= 'A' && c <= 'Z';
}
static bool
isdigit_ascii (int c)
{
return c >= '0' && c <= '9';
}
static bool
isalnum_ascii (int c)
{
return isalpha_ascii (c) || isdigit_ascii (c);
}
static bool
isspace_ascii (int c)
{
return c == ' ' || c == '\f' || c == '\n'
|| c == '\r' || c == '\t' || c == '\v';
}
// --- UTF-8 -------------------------------------------------------------------
/// Return the value of the UTF-8 character at `*s` and advance the pointer
/// to the next one. Returns -2 if there is only a partial but possibly valid
/// character sequence, or -1 on other errors. Either way, `*s` is untouched.
static int32_t
utf8_decode (const char **s, size_t len)
{
// End of string, we go no further
if (!len)
return -1;
// Find out how long the sequence is (0 for ASCII)
unsigned mask = 0x80;
unsigned sequence_len = 0;
const uint8_t *p = (const uint8_t *) *s, *end = p + len;
while ((*p & mask) == mask)
{
// Invalid start of sequence
if (mask == 0xFE)
return -1;
mask |= mask >> 1;
sequence_len++;
}
// In the middle of a character
// or an overlong sequence (subset, possibly MUTF-8, not supported)
if (sequence_len == 1 || *p == 0xC0 || *p == 0xC1)
return -1;
// Check the rest of the sequence
uint32_t cp = *p++ & ~mask;
while (sequence_len && --sequence_len)
{
if (p == end)
return -2;
if ((*p & 0xC0) != 0x80)
return -1;
cp = cp << 6 | (*p++ & 0x3F);
}
*s = (const char *) p;
return cp;
}
static inline bool
utf8_validate_cp (int32_t cp)
{
// RFC 3629, CESU-8 not allowed
return cp >= 0 && cp <= 0x10FFFF && (cp < 0xD800 || cp > 0xDFFF);
}
/// Very rough UTF-8 validation, just makes sure codepoints can be iterated
static bool
utf8_validate (const char *s, size_t len)
{
const char *end = s + len;
int32_t codepoint;
while ((codepoint = utf8_decode (&s, end - s)) >= 0
&& utf8_validate_cp (codepoint))
;
return s == end;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct utf8_iter
{
const char *s; ///< String iterator
size_t len; ///< How many bytes remain
};
static struct utf8_iter
utf8_iter_make (const char *s)
{
return (struct utf8_iter) { .s = s, .len = strlen (s) };
}
static int32_t
utf8_iter_next (struct utf8_iter *self, size_t *len)
{
if (!self->len)
return -1;
const char *old = self->s;
int32_t codepoint = utf8_decode (&self->s, self->len);
if (!soft_assert (codepoint >= 0))
{
// Invalid UTF-8
self->len = 0;
return codepoint;
}
size_t advance = self->s - old;
self->len -= advance;
if (len) *len = advance;
return codepoint;
}
// --- Base 64 -----------------------------------------------------------------
static uint8_t g_base64_table[256] =
{
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 62, 64, 64, 64, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 64, 64, 0, 64, 64,
64, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 64, 64, 64, 64, 64,
64, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static inline bool
base64_decode_group (const char **s, bool ignore_ws, struct str *output)
{
uint8_t input[4];
size_t loaded = 0;
for (; loaded < 4; (*s)++)
{
if (!**s)
return loaded == 0;
if (!ignore_ws || !isspace_ascii (**s))
input[loaded++] = **s;
}
size_t len = 3;
if (input[0] == '=' || input[1] == '=')
return false;
if (input[2] == '=' && input[3] != '=')
return false;
if (input[2] == '=')
len--;
if (input[3] == '=')
len--;
uint8_t a = g_base64_table[input[0]];
uint8_t b = g_base64_table[input[1]];
uint8_t c = g_base64_table[input[2]];
uint8_t d = g_base64_table[input[3]];
if (((a | b) | (c | d)) & 0x40)
return false;
uint32_t block = a << 18 | b << 12 | c << 6 | d;
switch (len)
{
case 1:
str_append_c (output, block >> 16);
break;
case 2:
str_append_c (output, block >> 16);
str_append_c (output, block >> 8);
break;
case 3:
str_append_c (output, block >> 16);
str_append_c (output, block >> 8);
str_append_c (output, block);
}
return true;
}
static bool
base64_decode (const char *s, bool ignore_ws, struct str *output)
{
while (*s)
if (!base64_decode_group (&s, ignore_ws, output))
return false;
return true;
}
static void
base64_encode (const void *data, size_t len, struct str *output)
{
const char *alphabet =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const uint8_t *p = data;
size_t n_groups = len / 3;
size_t tail = len - n_groups * 3;
uint32_t group;
for (; n_groups--; p += 3)
{
group = p[0] << 16 | p[1] << 8 | p[2];
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, alphabet[(group >> 6) & 63]);
str_append_c (output, alphabet[ group & 63]);
}
switch (tail)
{
case 2:
group = p[0] << 16 | p[1] << 8;
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, alphabet[(group >> 6) & 63]);
str_append_c (output, '=');
break;
case 1:
group = p[0] << 16;
str_append_c (output, alphabet[(group >> 18) & 63]);
str_append_c (output, alphabet[(group >> 12) & 63]);
str_append_c (output, '=');
str_append_c (output, '=');
default:
break;
}
}
// --- Utilities ---------------------------------------------------------------
static void
cstr_set (char **s, char *new)
{
free (*s);
*s = new;
}
static void
cstr_split (const char *s, const char *delimiters, bool ignore_empty,
struct strv *out)
{
const char *begin = s, *end;
while ((end = strpbrk (begin, delimiters)))
{
if (!ignore_empty || begin != end)
strv_append_owned (out, xstrndup (begin, end - begin));
begin = ++end;
}
if (!ignore_empty || *begin)
strv_append (out, begin);
}
static char *
cstr_strip_in_place (char *s, const char *stripped_chars)
{
char *end = s + strlen (s);
while (end > s && strchr (stripped_chars, end[-1]))
*--end = '\0';
char *start = s + strspn (s, stripped_chars);
if (start > s)
memmove (s, start, end - start + 1);
return s;
}
static void
cstr_transform (char *s, int (*xform) (int c))
{
for (; *s; s++)
*s = xform (*s);
}
static char *
cstr_cut_until (const char *s, const char *alphabet)
{
return xstrndup (s, strcspn (s, alphabet));
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static char *
strv_join (const struct strv *v, const char *delimiter)
{
if (!v->len)
return xstrdup ("");
struct str result = str_make ();
str_append (&result, v->vector[0]);
for (size_t i = 1; i < v->len; i++)
str_append_printf (&result, "%s%s", delimiter, v->vector[i]);
return str_steal (&result);
}
static char *xstrdup_printf (const char *, ...) ATTRIBUTE_PRINTF (1, 2);
static char *
xstrdup_printf (const char *format, ...)
{
va_list ap;
struct str tmp = str_make ();
va_start (ap, format);
str_append_vprintf (&tmp, format, ap);
va_end (ap);
return str_steal (&tmp);
}
static char *
iconv_xstrdup (iconv_t conv, char *in, size_t in_len, size_t *out_len)
{
char *buf, *buf_ptr;
size_t out_left, buf_alloc;
buf = buf_ptr = xmalloc (out_left = buf_alloc = 64);
char *in_ptr = in;
if (in_len == (size_t) -1)
// XXX: out_len will be one character longer than the string!
in_len = strlen (in) + 1;
while (iconv (conv, (char **) &in_ptr, &in_len,
(char **) &buf_ptr, &out_left) == (size_t) -1)
{
if (errno != E2BIG)
{
free (buf);
return NULL;
}
out_left += buf_alloc;
char *new_buf = xrealloc (buf, buf_alloc <<= 1);
buf_ptr += new_buf - buf;
buf = new_buf;
}
if (out_len)
*out_len = buf_alloc - out_left;
return buf;
}
static bool
set_boolean_if_valid (bool *out, const char *s)
{
if (!strcasecmp (s, "yes")) *out = true;
else if (!strcasecmp (s, "no")) *out = false;
else if (!strcasecmp (s, "on")) *out = true;
else if (!strcasecmp (s, "off")) *out = false;
else if (!strcasecmp (s, "true")) *out = true;
else if (!strcasecmp (s, "false")) *out = false;
else return false;
return true;
}
static bool
xstrtoul (unsigned long *out, const char *s, int base)
{
char *end;
errno = 0;
*out = strtoul (s, &end, base);
return errno == 0 && !*end && end != s;
}
static bool
read_line (FILE *fp, struct str *line)
{
str_reset (line);
int c;
while ((c = fgetc (fp)) != '\n')
{
if (c == EOF)
return line->len != 0;
if (c != '\r')
str_append_c (line, c);
}
return true;
}
static char *
format_host_port_pair (const char *host, const char *port)
{
// For when binding to the NULL address; would an asterisk be better?
if (!host)
host = "";
// IPv6 addresses mess with the "colon notation"; let's go with RFC 2732
if (strchr (host, ':'))
return xstrdup_printf ("[%s]:%s", host, port);
return xstrdup_printf ("%s:%s", host, port);
}
// --- File system -------------------------------------------------------------
static int
lock_pid_file (const char *path, struct error **e)
{
// When using XDG_RUNTIME_DIR, the file needs to either have its
// access time bumped every 6 hours, or have the sticky bit set
int fd = open (path, O_RDWR | O_CREAT,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH /* 644 */ | S_ISVTX /* sticky */);
if (fd < 0)
{
error_set (e, "can't open `%s': %s", path, strerror (errno));
return -1;
}
set_cloexec (fd);
struct flock lock =
{
.l_type = F_WRLCK,
.l_start = 0,
.l_whence = SEEK_SET,
.l_len = 0,
};
if (fcntl (fd, F_SETLK, &lock))
{
error_set (e, "can't lock `%s': %s", path, strerror (errno));
xclose (fd);
return -1;
}
struct str pid = str_make ();
str_append_printf (&pid, "%ld", (long) getpid ());
if (ftruncate (fd, 0)
|| write (fd, pid.str, pid.len) != (ssize_t) pid.len)
{
error_set (e, "can't write to `%s': %s", path, strerror (errno));
xclose (fd);
return -1;
}
str_free (&pid);
// Intentionally not closing the file descriptor; it must stay alive
// for the entire life of the application
return fd;
}
static bool
ensure_directory_existence (const char *path, struct error **e)
{
struct stat st;
if (stat (path, &st))
{
if (mkdir (path, S_IRWXU | S_IRWXG | S_IRWXO))
{
return error_set (e, "cannot create directory `%s': %s",
path, strerror (errno));
}
}
else if (!S_ISDIR (st.st_mode))
{
return error_set (e, "cannot create directory `%s': %s",
path, "file exists but is not a directory");
}
return true;
}
static bool
mkdir_with_parents (char *path, struct error **e)
{
char *p = path;
// XXX: This is prone to the TOCTTOU problem. The solution would be to
// rewrite the function using the {mkdir,fstat}at() functions from
// POSIX.1-2008, ideally returning a file descriptor to the open
// directory, with the current code as a fallback. Or to use chdir().
while ((p = strchr (p + 1, '/')))
{
*p = '\0';
bool success = ensure_directory_existence (path, e);
*p = '/';
if (!success)
return false;
}
return ensure_directory_existence (path, e);
}
static bool
str_append_env_path (struct str *output, const char *var, bool only_absolute)
{
const char *value = getenv (var);
if (!value || (only_absolute && *value != '/'))
return false;
str_append (output, value);
return true;
}
static void
get_xdg_home_dir (struct str *output, const char *var, const char *def)
{
str_reset (output);
if (!str_append_env_path (output, var, true))
{
str_append_env_path (output, "HOME", false);
str_append_c (output, '/');
str_append (output, def);
}
}
static char *
resolve_relative_filename_generic
(struct strv *paths, const char *tail, const char *filename)
{
for (unsigned i = 0; i < paths->len; i++)
{
// As per XDG spec, relative paths are ignored
if (*paths->vector[i] != '/')
continue;
char *file = xstrdup_printf
("%s/%s%s", paths->vector[i], tail, filename);
struct stat st;
if (!stat (file, &st))
return file;
free (file);
}
return NULL;
}
static void
get_xdg_config_dirs (struct strv *out)
{
struct str config_home = str_make ();
get_xdg_home_dir (&config_home, "XDG_CONFIG_HOME", ".config");
strv_append (out, config_home.str);
str_free (&config_home);
const char *xdg_config_dirs;
if (!(xdg_config_dirs = getenv ("XDG_CONFIG_DIRS")) || !*xdg_config_dirs)
xdg_config_dirs = "/etc/xdg";
cstr_split (xdg_config_dirs, ":", true, out);
}
static char *
resolve_relative_config_filename (const char *filename)
{
struct strv paths = strv_make ();
get_xdg_config_dirs (&paths);
char *result = resolve_relative_filename_generic
(&paths, PROGRAM_NAME "/", filename);
strv_free (&paths);
return result;
}
static void
get_xdg_data_dirs (struct strv *out)
{
struct str data_home = str_make ();
get_xdg_home_dir (&data_home, "XDG_DATA_HOME", ".local/share");
strv_append (out, data_home.str);
str_free (&data_home);
const char *xdg_data_dirs;
if (!(xdg_data_dirs = getenv ("XDG_DATA_DIRS")) || !*xdg_data_dirs)
xdg_data_dirs = "/usr/local/share/:/usr/share/";
cstr_split (xdg_data_dirs, ":", true, out);
}
static char *
resolve_relative_data_filename (const char *filename)
{
struct strv paths = strv_make ();
get_xdg_data_dirs (&paths);
char *result = resolve_relative_filename_generic
(&paths, PROGRAM_NAME "/", filename);
strv_free (&paths);
return result;
}
static char *
resolve_relative_runtime_filename_finish (struct str path)
{
// Try to create the file's ancestors;
// typically the user will want to immediately create a file in there
const char *last_slash = strrchr (path.str, '/');
if (last_slash && last_slash != path.str)
{
char *copy = xstrndup (path.str, last_slash - path.str);
(void) mkdir_with_parents (copy, NULL);
free (copy);
}
return str_steal (&path);
}
static char *
resolve_relative_runtime_filename (const char *filename)
{
struct str path = str_make ();
const char *runtime_dir = getenv ("XDG_RUNTIME_DIR");
if (runtime_dir && *runtime_dir == '/')
str_append (&path, runtime_dir);
else
get_xdg_home_dir (&path, "XDG_DATA_HOME", ".local/share");
str_append_printf (&path, "/%s/%s", PROGRAM_NAME, filename);
return resolve_relative_runtime_filename_finish (path);
}
/// This differs from resolve_relative_runtime_filename() in that we expect
/// the filename to be something like a pattern for mkstemp(), so the resulting
/// path can reside in a system-wide directory with no risk of a conflict.
/// However, we have to take care about permissions. Do we even need this?
static char *
resolve_relative_runtime_template (const char *template)
{
struct str path = str_make ();
const char *runtime_dir = getenv ("XDG_RUNTIME_DIR");
const char *tmpdir = getenv ("TMPDIR");
if (runtime_dir && *runtime_dir == '/')
str_append_printf (&path, "%s/%s", runtime_dir, PROGRAM_NAME);
else if (tmpdir && *tmpdir == '/')
str_append_printf (&path, "%s/%s.%d", tmpdir, PROGRAM_NAME, geteuid ());
else
str_append_printf (&path, "/tmp/%s.%d", PROGRAM_NAME, geteuid ());
str_append_printf (&path, "/%s", template);
return resolve_relative_runtime_filename_finish (path);
}
static char *
try_expand_tilde (const char *filename)
{
size_t until_slash = strcspn (filename, "/");
if (!until_slash)
{
struct str expanded = str_make ();
str_append_env_path (&expanded, "HOME", false);
str_append (&expanded, filename);
return str_steal (&expanded);
}
int buf_len = sysconf (_SC_GETPW_R_SIZE_MAX);
if (buf_len < 0)
buf_len = 1024;
struct passwd pwd, *success = NULL;
char *user = xstrndup (filename, until_slash);
char *buf = xmalloc (buf_len);
while (getpwnam_r (user, &pwd, buf, buf_len, &success) == ERANGE)
buf = xrealloc (buf, buf_len <<= 1);
free (user);
char *result = NULL;
if (success)
result = xstrdup_printf ("%s%s", pwd.pw_dir, filename + until_slash);
free (buf);
return result;
}
static char *
resolve_filename (const char *filename, char *(*relative_cb) (const char *))
{
// Absolute path is absolute
if (*filename == '/')
return xstrdup (filename);
// We don't want to use wordexp() for this as it may execute /bin/sh
if (*filename == '~')
{
// Paths to home directories ought to be absolute
char *expanded = try_expand_tilde (filename + 1);
if (expanded)
return expanded;
print_debug ("failed to expand the home directory in `%s'", filename);
}
return relative_cb (filename);
}
// --- OpenSSL -----------------------------------------------------------------
#ifdef LIBERTY_WANT_SSL
#define XSSL_ERROR_TRY_AGAIN INT_MAX
/// A small wrapper around SSL_get_error() to simplify further handling
static int
xssl_get_error (SSL *ssl, int result, const char **error_info)
{
int error = SSL_get_error (ssl, result);
switch (error)
{
case SSL_ERROR_NONE:
case SSL_ERROR_ZERO_RETURN:
case SSL_ERROR_WANT_READ:
case SSL_ERROR_WANT_WRITE:
return error;
case SSL_ERROR_SYSCALL:
if ((error = ERR_get_error ()))
*error_info = ERR_reason_error_string (error);
else if (result == 0)
// An EOF that's not according to the protocol is still an EOF
return SSL_ERROR_ZERO_RETURN;
else
{
if (errno == EINTR)
return XSSL_ERROR_TRY_AGAIN;
*error_info = strerror (errno);
}
return SSL_ERROR_SSL;
default:
if ((error = ERR_get_error ()))
*error_info = ERR_reason_error_string (error);
else
*error_info = "unknown error";
return SSL_ERROR_SSL;
}
}
#endif // LIBERTY_WANT_SSL
// --- Regular expressions -----------------------------------------------------
static regex_t *
regex_compile (const char *regex, int flags, struct error **e)
{
regex_t *re = xmalloc (sizeof *re);
int err = regcomp (re, regex, flags);
if (!err)
return re;
char buf[regerror (err, re, NULL, 0)];
regerror (err, re, buf, sizeof buf);
free (re);
error_set (e, "%s: %s", "failed to compile regular expression", buf);
return NULL;
}
static void
regex_free (void *regex)
{
regfree (regex);
free (regex);
}
// The cost of hashing a string is likely to be significantly smaller than that
// of compiling the whole regular expression anew, so here is a simple cache.
// Adding basic support for subgroups is easy: check `re_nsub' and output into
// a `struct strv' (if all we want is the substrings).
static struct str_map
regex_cache_make (void)
{
return str_map_make (regex_free);
}
static bool
regex_cache_match (struct str_map *cache, const char *regex, int flags,
const char *s, struct error **e)
{
regex_t *re = str_map_find (cache, regex);
if (!re)
{
re = regex_compile (regex, flags, e);
if (!re)
return false;
str_map_set (cache, regex, re);
}
return regexec (re, s, 0, NULL, 0) != REG_NOMATCH;
}
// --- Simple file I/O ---------------------------------------------------------
static bool
read_file (const char *filename, struct str *output, struct error **e)
{
FILE *fp = fopen (filename, "rb");
if (!fp)
{
return error_set (e, "could not open `%s' for reading: %s",
filename, strerror (errno));
}
char buf[BUFSIZ];
size_t len;
while ((len = fread (buf, 1, sizeof buf, fp)) == sizeof buf)
str_append_data (output, buf, len);
str_append_data (output, buf, len);
bool success = !ferror (fp);
fclose (fp);
if (success)
return true;
return error_set (e, "error while reading `%s': %s",
filename, strerror (errno));
}
/// Overwrites filename contents with data; creates directories as needed
static bool
write_file (const char *filename, const void *data, size_t data_len,
struct error **e)
{
char *dir = xstrdup (filename);
bool parents_created = mkdir_with_parents (dirname (dir), e);
free (dir);
if (!parents_created)
return false;
FILE *fp = fopen (filename, "w");
if (!fp)
{
return error_set (e, "could not open `%s' for writing: %s",
filename, strerror (errno));
}
fwrite (data, data_len, 1, fp);
bool success = !ferror (fp) && !fflush (fp)
&& (!fsync (fileno (fp)) || errno == EINVAL);
fclose (fp);
if (!success)
{
return error_set (e, "writing to `%s' failed: %s",
filename, strerror (errno));
}
return true;
}
/// Wrapper for write_file() that makes sure that the new data has been written
/// to disk in its entirety before overriding the old file
static bool
write_file_safe (const char *filename, const void *data, size_t data_len,
struct error **e)
{
// XXX: ideally we would also open the directory, use *at() versions
// of functions and call fsync() on the directory as appropriate
// FIXME: this should behave similarly to mkstemp(), just with 0666;
// as it is, this function is not particularly safe
char *temp = xstrdup_printf ("%s.new", filename);
bool success = write_file (temp, data, data_len, e);
if (success && !(success = !rename (temp, filename)))
error_set (e, "could not rename `%s' to `%s': %s",
temp, filename, strerror (errno));
free (temp);
return success;
}
// --- Simple configuration ----------------------------------------------------
// This is the bare minimum to make an application configurable.
// Keys are stripped of surrounding whitespace, values are not.
struct simple_config_item { const char *key, *default_value, *description; };
static void
simple_config_load_defaults
(struct str_map *config, const struct simple_config_item *table)
{
for (; table->key != NULL; table++)
if (table->default_value)
str_map_set (config, table->key, xstrdup (table->default_value));
else
str_map_set (config, table->key, NULL);
}
static bool
simple_config_update_from_file (struct str_map *config, struct error **e)
{
char *filename = resolve_filename
(PROGRAM_NAME ".conf", resolve_relative_config_filename);
struct str s = str_make ();
bool ok = !filename || read_file (filename, &s, e);
size_t line_no = 0;
for (char *x = strtok (s.str, "\r\n"); ok && x; x = strtok (NULL, "\r\n"))
{
line_no++;
if (strchr ("#", *(x += strspn (x, " \t"))))
continue;
char *equals = strchr (x, '=');
if (!equals || equals == x)
ok = error_set (e, "%s: malformed line %zu", filename, line_no);
else
{
char *end = equals++;
do *end = '\0'; while (strchr (" \t", *--end));
str_map_set (config, x, xstrdup (equals));
}
}
str_free (&s);
free (filename);
return ok;
}
static char *
write_configuration_file (const char *path_hint, const struct str *data,
struct error **e)
{
struct str path = str_make ();
if (path_hint)
str_append (&path, path_hint);
else
{
get_xdg_home_dir (&path, "XDG_CONFIG_HOME", ".config");
str_append (&path, "/" PROGRAM_NAME "/" PROGRAM_NAME ".conf");
}
if (!write_file_safe (path.str, data->str, data->len, e))
{
str_free (&path);
return NULL;
}
return str_steal (&path);
}
static char *
simple_config_write_default (const char *path_hint, const char *prolog,
const struct simple_config_item *table, struct error **e)
{
struct str data = str_make ();
if (prolog)
str_append (&data, prolog);
for (; table->key != NULL; table++)
{
str_append_printf (&data, "# %s\n", table->description);
if (table->default_value)
str_append_printf (&data, "%s=%s\n",
table->key, table->default_value);
else
str_append_printf (&data, "#%s=\n", table->key);
}
char *path = write_configuration_file (path_hint, &data, e);
str_free (&data);
return path;
}
/// Convenience wrapper suitable for most simple applications
static void
call_simple_config_write_default
(const char *path_hint, const struct simple_config_item *table)
{
static const char *prolog =
"# " PROGRAM_NAME " " PROGRAM_VERSION " configuration file\n"
"#\n"
"# Relative paths are searched for in ${XDG_CONFIG_HOME:-~/.config}\n"
"# /" PROGRAM_NAME " as well as in $XDG_CONFIG_DIRS/" PROGRAM_NAME "\n"
"\n";
struct error *e = NULL;
char *filename = simple_config_write_default (path_hint, prolog, table, &e);
if (!filename)
{
print_error ("%s", e->message);
error_free (e);
exit (EXIT_FAILURE);
}
print_status ("configuration written to `%s'", filename);
free (filename);
}
// --- Option handler ----------------------------------------------------------
// Simple wrapper for the getopt_long API to make it easier to use and maintain.
#define OPT_USAGE_ALIGNMENT_COLUMN 30 ///< Alignment for option descriptions
enum
{
OPT_OPTIONAL_ARG = (1 << 0), ///< The argument is optional
OPT_LONG_ONLY = (1 << 1) ///< Ignore the short name in opt_string
};
// All options need to have both a short name, and a long name. The short name
// is what is returned from opt_handler_get(). It is possible to define a value
// completely out of the character range combined with the OPT_LONG_ONLY flag.
//
// When `arg_hint' is defined, the option is assumed to have an argument.
struct opt
{
int short_name; ///< The single-letter name
const char *long_name; ///< The long name
const char *arg_hint; ///< Option argument hint
int flags; ///< Option flags
const char *description; ///< Option description
};
struct opt_handler
{
int argc; ///< The number of program arguments
char **argv; ///< Program arguments
const char *arg_hint; ///< Program arguments hint
const char *description; ///< Description of the program
const struct opt *opts; ///< The list of options
size_t opts_len; ///< The length of the option array
struct option *options; ///< The list of options for getopt
char *opt_string; ///< The `optstring' for getopt
};
static void
opt_handler_free (struct opt_handler *self)
{
free (self->options);
free (self->opt_string);
}
static struct opt_handler
opt_handler_make (int argc, char **argv,
const struct opt *opts, const char *arg_hint, const char *description)
{
struct opt_handler self =
{
.argc = argc,
.argv = argv,
.arg_hint = arg_hint,
.description = description,
};
size_t len = 0;
for (const struct opt *iter = opts; iter->long_name; iter++)
len++;
self.opts = opts;
self.opts_len = len;
self.options = xcalloc (len + 1, sizeof *self.options);
struct str opt_string = str_make ();
for (size_t i = 0; i < len; i++)
{
const struct opt *opt = opts + i;
struct option *mapped = self.options + i;
mapped->name = opt->long_name;
if (!opt->arg_hint)
mapped->has_arg = no_argument;
else if (opt->flags & OPT_OPTIONAL_ARG)
mapped->has_arg = optional_argument;
else
mapped->has_arg = required_argument;
mapped->val = opt->short_name;
if (opt->flags & OPT_LONG_ONLY)
continue;
str_append_c (&opt_string, opt->short_name);
if (opt->arg_hint)
{
str_append_c (&opt_string, ':');
if (opt->flags & OPT_OPTIONAL_ARG)
str_append_c (&opt_string, ':');
}
}
self.opt_string = str_steal (&opt_string);
return self;
}
static void
opt_handler_usage (const struct opt_handler *self, FILE *stream)
{
struct str usage = str_make ();
str_append_printf (&usage, "Usage: %s [OPTION]... %s\n",
self->argv[0], self->arg_hint ? self->arg_hint : "");
str_append_printf (&usage, "%s\n\n", self->description);
for (size_t i = 0; i < self->opts_len; i++)
{
struct str row = str_make ();
const struct opt *opt = self->opts + i;
if (!(opt->flags & OPT_LONG_ONLY))
str_append_printf (&row, " -%c, ", opt->short_name);
else
str_append (&row, " ");
str_append_printf (&row, "--%s", opt->long_name);
if (opt->arg_hint)
str_append_printf (&row, (opt->flags & OPT_OPTIONAL_ARG)
? "[=%s]" : " %s", opt->arg_hint);
// TODO: keep the indent if there are multiple lines
if (row.len + 2 <= OPT_USAGE_ALIGNMENT_COLUMN)
{
str_append (&row, " ");
str_append_printf (&usage, "%-*s%s\n",
OPT_USAGE_ALIGNMENT_COLUMN, row.str, opt->description);
}
else
str_append_printf (&usage, "%s\n%-*s%s\n", row.str,
OPT_USAGE_ALIGNMENT_COLUMN, "", opt->description);
str_free (&row);
}
fputs (usage.str, stream);
str_free (&usage);
}
static int
opt_handler_get (const struct opt_handler *self)
{
return getopt_long (self->argc, self->argv,
self->opt_string, self->options, NULL);
}
// --- Unit tests --------------------------------------------------------------
// This is modeled after GTest, only remarkably simpler.
typedef void (*test_fn) (const void *data, void *fixture);
struct test_unit
{
LIST_HEADER (struct test_unit)
char *name; ///< Name of the test
size_t fixture_size; ///< Fixture size
const void *user_data; ///< User data
test_fn setup; ///< Fixture setup callback
test_fn test; ///< The test
test_fn teardown; ///< Fixture teardown callback
};
struct test
{
struct test_unit *tests; ///< List of tests
struct test_unit *tests_tail; ///< End of the list of tests
struct str_map whitelist; ///< Whitelisted tests
struct str_map blacklist; ///< Blacklisted tests
unsigned list_only : 1; ///< Just list all tests
unsigned can_fork : 1; ///< Forking doesn't break anything
};
static void
test_init (struct test *self, int argc, char **argv)
{
memset (self, 0, sizeof *self);
self->whitelist = str_map_make (NULL);
self->blacklist = str_map_make (NULL);
// Usually this shouldn't pose a problem but let's make it optional
self->can_fork = true;
static const struct opt opts[] =
{
{ 'd', "debug", NULL, 0, "run in debug mode" },
{ 'h', "help", NULL, 0, "display this help and exit" },
{ 'p', "pass", "NAME", 0, "only run tests glob-matching the name" },
{ 's', "skip", "NAME", 0, "skip all tests glob-matching the name" },
{ 'S', "single-process", NULL, 0, "don't fork for each test" },
{ 'l', "list", NULL, 0, "list all available tests" },
{ 0, NULL, NULL, 0, NULL }
};
struct opt_handler oh =
opt_handler_make (argc, argv, opts, NULL, "Unit test runner");
int c;
while ((c = opt_handler_get (&oh)) != -1)
switch (c)
{
case 'd':
g_debug_mode = true;
break;
case 'h':
opt_handler_usage (&oh, stdout);
exit (EXIT_SUCCESS);
case 'p':
str_map_set (&self->whitelist, optarg, (void *) 1);
break;
case 's':
str_map_set (&self->blacklist, optarg, (void *) 1);
break;
case 'S': self->can_fork = false; break;
case 'l': self->list_only = true; break;
default:
print_error ("wrong options");
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
argc -= optind;
argv += optind;
if (argc)
{
opt_handler_usage (&oh, stderr);
exit (EXIT_FAILURE);
}
opt_handler_free (&oh);
}
static void
test_add_internal (struct test *self, const char *name, size_t fixture_size,
const void *user_data, test_fn setup, test_fn test, test_fn teardown)
{
hard_assert (test != NULL);
hard_assert (name != NULL);
struct test_unit *unit = xcalloc (1, sizeof *unit);
unit->name = xstrdup (name);
unit->fixture_size = fixture_size;
unit->user_data = user_data;
unit->setup = setup;
unit->test = test;
unit->teardown = teardown;
LIST_APPEND_WITH_TAIL (self->tests, self->tests_tail, unit);
}
#define test_add(self, name, fixture_type, user_data, setup, test, teardown) \
test_add_internal ((self), (name), sizeof (fixture_type), (user_data), \
(test_fn) (setup), (test_fn) (test), (test_fn) (teardown))
#define test_add_simple(self, name, user_data, test) \
test_add_internal ((self), (name), 0, (user_data), \
NULL, (test_fn) (test), NULL)
static bool
str_map_glob_match (struct str_map *self, const char *entry)
{
struct str_map_iter iter = str_map_iter_make (self);
while (str_map_iter_next (&iter))
if (!fnmatch (iter.link->key, entry, 0))
return true;
return false;
}
static bool
test_is_allowed (struct test *self, const char *name)
{
bool allowed = true;
if (self->whitelist.len)
allowed = str_map_glob_match (&self->whitelist, name);
if (self->blacklist.len)
allowed &= !str_map_glob_match (&self->blacklist, name);
return allowed;
}
static void
test_unit_run (struct test_unit *self)
{
void *fixture = xcalloc (1, self->fixture_size);
if (self->setup)
self->setup (self->user_data, fixture);
self->test (self->user_data, fixture);
if (self->teardown)
self->teardown (self->user_data, fixture);
free (fixture);
}
static bool
test_unit_run_forked (struct test_unit *self)
{
pid_t child = fork ();
if (child == -1)
{
print_error ("%s: %s", "fork", strerror (errno));
return false;
}
else if (!child)
{
test_unit_run (self);
_exit (EXIT_SUCCESS);
}
int status = 0;
if (waitpid (child, &status, WUNTRACED) == -1)
print_error ("%s: %s", "waitpid", strerror (errno));
else if (WIFSTOPPED (status))
{
print_error ("test child has been stopped");
(void) kill (child, SIGKILL);
}
else if (WIFSIGNALED (status))
print_error ("test child was killed by signal %d", WTERMSIG (status));
else if (WEXITSTATUS (status) != 0)
print_error ("test child exited with status %d", WEXITSTATUS (status));
else
return true;
return false;
}
static bool
test_run_unit (struct test *self, struct test_unit *unit)
{
fprintf (stderr, "%s: ", unit->name);
if (!self->can_fork)
test_unit_run (unit);
else if (!test_unit_run_forked (unit))
return false;
fprintf (stderr, "OK\n");
return true;
}
static int
test_run (struct test *self)
{
g_soft_asserts_are_deadly = true;
bool failure = false;
LIST_FOR_EACH (struct test_unit, iter, self->tests)
{
if (!test_is_allowed (self, iter->name))
continue;
if (self->list_only)
printf ("%s\n", iter->name);
else if (!test_run_unit (self, iter))
failure = true;
}
LIST_FOR_EACH (struct test_unit, iter, self->tests)
{
free (iter->name);
free (iter);
}
str_map_free (&self->whitelist);
str_map_free (&self->blacklist);
return failure;
}
// --- Connector ---------------------------------------------------------------
#if defined LIBERTY_WANT_POLLER && defined LIBERTY_WANT_ASYNC
// This is a helper that tries to establish a connection with any address on
// a given list. Sadly it also introduces a bit of a callback hell.
struct connector_target
{
LIST_HEADER (struct connector_target)
struct connector *connector; ///< Parent connector
char *hostname; ///< Target hostname or address
char *service; ///< Target service name or port
struct async *getaddrinfo_event; ///< Address resolution
struct error *getaddrinfo_error; ///< Address resolution error
struct addrinfo *results; ///< Resolved target
struct addrinfo *iter; ///< Current endpoint
};
static struct connector_target *
connector_target_new (void)
{
struct connector_target *self = xcalloc (1, sizeof *self);
return self;
}
static void
connector_target_destroy (struct connector_target *self)
{
if (self->getaddrinfo_event)
async_cancel (self->getaddrinfo_event);
if (self->getaddrinfo_error)
error_free (self->getaddrinfo_error);
if (self->results)
freeaddrinfo (self->results);
free (self->hostname);
free (self->service);
free (self);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct connector
{
struct poller *poller; ///< Poller
int socket; ///< Socket FD for the connection
struct poller_fd connected_event; ///< We've connected or failed
struct connector_target *targets; ///< Targets
struct connector_target *targets_t; ///< Tail of targets
void *user_data; ///< User data for callbacks
// You may destroy the connector object in these two main callbacks:
/// Connection has been successfully established;
/// the hostname is mainly intended for TLS Server Name Indication
void (*on_connected) (void *user_data, int socket, const char *hostname);
/// Failed to establish a connection to either target
void (*on_failure) (void *user_data);
// Optional:
/// Connecting to a new address
void (*on_connecting) (void *user_data, const char *address);
/// Connecting to the last address has failed
void (*on_error) (void *user_data, const char *error);
};
static void
connector_notify_connecting (struct connector *self,
struct connector_target *target, struct addrinfo *gai_iter)
{
if (!self->on_connecting)
return;
const char *real_host = target->hostname;
char buf[NI_MAXHOST];
if (gai_iter)
{
// We don't really need this, so we can let it quietly fail
int err = getnameinfo (gai_iter->ai_addr, gai_iter->ai_addrlen,
buf, sizeof buf, NULL, 0, NI_NUMERICHOST);
if (err)
LOG_FUNC_FAILURE ("getnameinfo", gai_strerror (err));
else
real_host = buf;
}
char *address = format_host_port_pair (real_host, target->service);
self->on_connecting (self->user_data, address);
free (address);
}
static void
connector_notify_connected (struct connector *self, int fd)
{
set_blocking (fd, true);
self->on_connected (self->user_data, fd, self->targets->hostname);
}
static void
connector_prepare_next (struct connector *self)
{
struct connector_target *target = self->targets;
if (!target->iter || !(target->iter = target->iter->ai_next))
{
LIST_UNLINK_WITH_TAIL (self->targets, self->targets_t, target);
connector_target_destroy (target);
}
}
static void connector_handle_error (struct connector *self, const char *error);
/// See if there's any target remaining at all -- it can however either still
/// be waiting for address resolution to finish, or have already failed
static bool
connector_check_target (struct connector *self, struct connector_target *target)
{
if (!target)
self->on_failure (self->user_data);
else if (target->getaddrinfo_error)
{
connector_notify_connecting (self, target, NULL);
connector_handle_error (self, target->getaddrinfo_error->message);
}
else if (target->results)
return true;
return false;
}
static void
connector_step (struct connector *self)
{
struct connector_target *target = self->targets;
if (!connector_check_target (self, target))
return;
struct addrinfo *gai_iter = target->iter;
hard_assert (gai_iter != NULL);
connector_notify_connecting (self, target, gai_iter);
int fd = socket (gai_iter->ai_family,
gai_iter->ai_socktype, gai_iter->ai_protocol);
if (fd == -1)
{
connector_handle_error (self, strerror (errno));
return;
}
set_cloexec (fd);
set_blocking (fd, false);
int yes = 1;
soft_assert (setsockopt (fd, SOL_SOCKET, SO_KEEPALIVE,
&yes, sizeof yes) != -1);
if (!connect (fd, gai_iter->ai_addr, gai_iter->ai_addrlen))
connector_notify_connected (self, fd);
else if (errno == EINPROGRESS)
{
self->connected_event.fd = self->socket = fd;
poller_fd_set (&self->connected_event, POLLOUT);
}
else
{
connector_handle_error (self, strerror (errno));
xclose (fd);
}
}
static void
connector_handle_error (struct connector *self, const char *error)
{
if (self->on_error)
self->on_error (self->user_data, error);
connector_prepare_next (self);
connector_step (self);
}
static void
connector_on_ready (const struct pollfd *pfd, struct connector *self)
{
// See http://cr.yp.to/docs/connect.html if this doesn't work.
// The second connect() method doesn't work with DragonflyBSD.
int error = 0;
socklen_t error_len = sizeof error;
hard_assert (!getsockopt (pfd->fd,
SOL_SOCKET, SO_ERROR, &error, &error_len));
if (error)
{
poller_fd_reset (&self->connected_event);
xclose (self->socket);
self->socket = -1;
connector_handle_error (self, strerror (error));
}
else
{
poller_fd_reset (&self->connected_event);
self->socket = -1;
connector_notify_connected (self, pfd->fd);
}
}
static void
connector_init (struct connector *self, struct poller *poller)
{
memset (self, 0, sizeof *self);
self->poller = poller;
self->socket = -1;
self->connected_event = poller_fd_make (poller, self->socket);
self->connected_event.user_data = self;
self->connected_event.dispatcher = (poller_fd_fn) connector_on_ready;
}
static void
connector_free (struct connector *self)
{
poller_fd_reset (&self->connected_event);
if (self->socket != -1)
xclose (self->socket);
LIST_FOR_EACH (struct connector_target, iter, self->targets)
connector_target_destroy (iter);
}
static void
connector_on_getaddrinfo (int err, struct addrinfo *results, void *user_data)
{
struct connector_target *self = user_data;
if (err)
{
error_set (&self->getaddrinfo_error,
"%s: %s", "getaddrinfo", gai_strerror (err));
}
self->results = self->iter = results;
self->getaddrinfo_event = NULL;
// We've been waiting for this address to be resolved
if (self == self->connector->targets)
connector_step (self->connector);
}
/// Connection will be attempted asynchronously once you add any target
static void
connector_add_target (struct connector *self,
const char *hostname, const char *service)
{
struct connector_target *target = connector_target_new ();
target->connector = self;
target->hostname = xstrdup (hostname);
target->service = xstrdup (service);
struct addrinfo hints;
memset (&hints, 0, sizeof hints);
hints.ai_socktype = SOCK_STREAM;
struct async_getaddrinfo *gai = async_getaddrinfo
(&self->poller->common.async, hostname, service, &hints);
gai->dispatcher = connector_on_getaddrinfo;
gai->user_data = target;
target->getaddrinfo_event = &gai->async;
LIST_APPEND_WITH_TAIL (self->targets, self->targets_t, target);
}
#endif // defined LIBERTY_WANT_POLLER && defined LIBERTY_WANT_ASYNC
// --- Simple network I/O ------------------------------------------------------
enum socket_io_result
{
SOCKET_IO_OK = 0, ///< Completed successfully
SOCKET_IO_EOF, ///< Connection shut down by peer
SOCKET_IO_ERROR ///< Connection error
};
static enum socket_io_result
socket_io_try_read (int socket_fd, struct str *rb)
{
// Flood protection, cannot afford to read too much at once
size_t read_limit = rb->len + (1 << 20);
if (read_limit < rb->len)
read_limit = SIZE_MAX;
ssize_t n_read;
while (rb->len < read_limit)
{
str_reserve (rb, 1024);
n_read = read (socket_fd, rb->str + rb->len,
rb->alloc - rb->len - 1 /* null byte */);
if (n_read > 0)
{
rb->str[rb->len += n_read] = '\0';
continue;
}
if (n_read == 0)
return SOCKET_IO_EOF;
if (errno == EAGAIN)
return SOCKET_IO_OK;
if (errno == EINTR)
continue;
int errno_save = errno;
LOG_LIBC_FAILURE ("read");
errno = errno_save;
return SOCKET_IO_ERROR;
}
return SOCKET_IO_OK;
}
static enum socket_io_result
socket_io_try_write (int socket_fd, struct str *wb)
{
ssize_t n_written;
while (wb->len)
{
n_written = write (socket_fd, wb->str, wb->len);
if (n_written >= 0)
{
str_remove_slice (wb, 0, n_written);
continue;
}
if (errno == EAGAIN)
return SOCKET_IO_OK;
if (errno == EINTR)
continue;
int errno_save = errno;
LOG_LIBC_FAILURE ("write");
errno = errno_save;
return SOCKET_IO_ERROR;
}
return SOCKET_IO_OK;
}
// --- Advanced configuration --------------------------------------------------
// This is a more powerful configuration format, adding key-value maps and
// simplifying item validation and dynamic handling of changes. All strings
// must be encoded in UTF-8.
//
// The syntax is roughly described by the following parsing expression grammar:
//
// config = entries eof # as if there were implicit curly braces around
// entries = (newline* pair)* newline*
// pair = key newline* lws '=' newline* value (&endobj / newline / eof)
// key = string / !null !boolean lws [A-Za-z_][0-9A-Za-z_]*
// value = object / string / integer / null / boolean
//
// object = lws '{' entries endobj
// endobj = lws '}'
//
// quoted = lws '"' (!["\\] char / '\\' escape)* '"'
// / lws '`' (![`] char)* '`'
// string = (quoted)+
// char = [\0-\177] # or any Unicode codepoint in the UTF-8 encoding
// escape = [\\"abfnrtv] / [xX][0-9A-Fa-f][0-9A-Fa-f]? / [0-7][0-7]?[0-7]?
//
// integer = lws [-+]? [0-9]+ # whatever strtoll() accepts on your system
// null = lws 'null'
// boolean = lws 'yes' / lws 'YES' / lws 'no' / lws 'NO'
// / lws 'on' / lws 'ON' / lws 'off' / lws 'OFF'
// / lws 'true' / lws 'TRUE' / lws 'false' / lws 'FALSE'
//
// newline = lws comment? '\n'
// eof = lws comment? !.
// lws = [ \t\r]* # linear whitespace (plus CR as it is insignificant)
// comment = '#' (!'\n' .)*
enum config_item_type
{
CONFIG_ITEM_NULL, ///< No value
CONFIG_ITEM_OBJECT, ///< Key-value map
CONFIG_ITEM_BOOLEAN, ///< Truth value
CONFIG_ITEM_INTEGER, ///< Integer
CONFIG_ITEM_STRING, ///< Arbitrary string of characters
CONFIG_ITEM_STRING_ARRAY ///< Comma-separated list of strings
};
struct config_item
{
enum config_item_type type; ///< Type of the item
union
{
struct str_map object; ///< Key-value data
bool boolean; ///< Boolean data
int64_t integer; ///< Integer data
struct str string; ///< String data
}
value; ///< The value of this item
const struct config_schema *schema; ///< Schema describing this value
void *user_data; ///< User value attached by schema owner
};
struct config_schema
{
const char *name; ///< Name of the item
const char *comment; ///< User-readable description
enum config_item_type type; ///< Required type
const char *default_; ///< Default as a configuration snippet
/// Check if the new value can be accepted.
/// In addition to this, "type" and having a default is considered.
bool (*validate) (const struct config_item *, struct error **e);
/// The value has changed
void (*on_change) (struct config_item *);
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
static const char *
config_item_type_name (enum config_item_type type)
{
switch (type)
{
case CONFIG_ITEM_NULL: return "null";
case CONFIG_ITEM_BOOLEAN: return "boolean";
case CONFIG_ITEM_INTEGER: return "integer";
case CONFIG_ITEM_STRING: return "string";
case CONFIG_ITEM_STRING_ARRAY: return "string array";
default:
hard_assert (!"invalid config item type value");
return NULL;
}
}
static bool
config_item_type_is_string (enum config_item_type type)
{
return type == CONFIG_ITEM_STRING
|| type == CONFIG_ITEM_STRING_ARRAY;
}
static void
config_item_free (struct config_item *self)
{
switch (self->type)
{
case CONFIG_ITEM_STRING:
case CONFIG_ITEM_STRING_ARRAY:
str_free (&self->value.string);
break;
case CONFIG_ITEM_OBJECT:
str_map_free (&self->value.object);
default:
break;
}
}
static void
config_item_destroy (struct config_item *self)
{
config_item_free (self);
free (self);
}
/// Doesn't do any validations or handle schemas, just moves source data
/// to the target item and destroys the source item
static void
config_item_move (struct config_item *self, struct config_item *source)
{
// Not quite sure how to handle that
hard_assert (!source->schema);
config_item_free (self);
self->type = source->type;
memcpy (&self->value, &source->value, sizeof source->value);
free (source);
}
static struct config_item *
config_item_new (enum config_item_type type)
{
struct config_item *self = xcalloc (1, sizeof *self);
self->type = type;
return self;
}
static struct config_item *
config_item_null (void)
{
return config_item_new (CONFIG_ITEM_NULL);
}
static struct config_item *
config_item_boolean (bool b)
{
struct config_item *self = config_item_new (CONFIG_ITEM_BOOLEAN);
self->value.boolean = b;
return self;
}
static struct config_item *
config_item_integer (int64_t i)
{
struct config_item *self = config_item_new (CONFIG_ITEM_INTEGER);
self->value.integer = i;
return self;
}
static struct config_item *
config_item_string (const struct str *s)
{
struct config_item *self = config_item_new (CONFIG_ITEM_STRING);
self->value.string = str_make ();
hard_assert (utf8_validate
(self->value.string.str, self->value.string.len));
if (s) str_append_str (&self->value.string, s);
return self;
}
static struct config_item *
config_item_string_from_cstr (const char *s)
{
struct str tmp = str_make ();
str_append (&tmp, s);
struct config_item *self = config_item_string (&tmp);
str_free (&tmp);
return self;
}
static struct config_item *
config_item_string_array (const struct str *s)
{
struct config_item *self = config_item_string (s);
self->type = CONFIG_ITEM_STRING_ARRAY;
return self;
}
static struct config_item *
config_item_object (void)
{
struct config_item *self = config_item_new (CONFIG_ITEM_OBJECT);
self->value.object = str_map_make ((str_map_free_fn) config_item_destroy);
return self;
}
static bool
config_schema_accepts_type
(const struct config_schema *self, enum config_item_type type)
{
if (self->type == type)
return true;
// This is a bit messy but it has its purpose
if (config_item_type_is_string (self->type)
&& config_item_type_is_string (type))
return true;
return !self->default_ && type == CONFIG_ITEM_NULL;
}
static bool
config_item_validate_by_schema (struct config_item *self,
const struct config_schema *schema, struct error **e)
{
struct error *error = NULL;
if (!config_schema_accepts_type (schema, self->type))
error_set (e, "invalid type of value, expected: %s%s",
config_item_type_name (schema->type),
!schema->default_ ? " (or null)" : "");
else if (schema->validate && !schema->validate (self, &error))
{
error_set (e, "%s: %s", "invalid value", error->message);
error_free (error);
}
else
return true;
return false;
}
static bool
config_item_set_from (struct config_item *self, struct config_item *source,
struct error **e)
{
const struct config_schema *schema = self->schema;
if (!schema)
{
// Easy, we don't know what this item is
config_item_move (self, source);
return true;
}
source->user_data = self->user_data;
if (!config_item_validate_by_schema (source, schema, e))
return false;
// Make sure the string subtype fits the schema
if (config_item_type_is_string (source->type)
&& config_item_type_is_string (schema->type))
source->type = schema->type;
config_item_move (self, source);
// Notify owner about the change so that they can apply it
if (schema->on_change)
schema->on_change (self);
return true;
}
static struct config_item *
config_item_get (struct config_item *self, const char *path, struct error **e)
{
hard_assert (self->type == CONFIG_ITEM_OBJECT);
struct strv v = strv_make ();
cstr_split (path, ".", false, &v);
struct config_item *result = NULL;
size_t i = 0;
while (true)
{
const char *key = v.vector[i];
if (!*key)
error_set (e, "empty path element");
else if (!(self = str_map_find (&self->value.object, key)))
error_set (e, "`%s' not found in object", key);
else if (++i == v.len)
result = self;
else if (self->type != CONFIG_ITEM_OBJECT)
error_set (e, "`%s' is not an object", key);
else
continue;
break;
}
strv_free (&v);
return result;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct config_writer
{
struct str *output;
unsigned indent;
};
static void config_item_write_object_innards
(struct config_writer *self, struct config_item *object);
static void
config_item_write_string (struct str *output, const struct str *s)
{
str_append_c (output, '"');
for (size_t i = 0; i < s->len; i++)
{
unsigned char c = s->str[i];
if (c == '\n') str_append (output, "\\n");
else if (c == '\r') str_append (output, "\\r");
else if (c == '\t') str_append (output, "\\t");
else if (c == '\\') str_append (output, "\\\\");
else if (c == '"') str_append (output, "\\\"");
else if (iscntrl_ascii (c))
str_append_printf (output, "\\x%02x", c);
else
str_append_c (output, c);
}
str_append_c (output, '"');
}
static void
config_item_write_object
(struct config_writer *self, struct config_item *value)
{
char indent[self->indent + 1];
memset (indent, '\t', self->indent);
indent[self->indent] = 0;
str_append_c (self->output, '{');
if (value->value.object.len)
{
self->indent++;
str_append_c (self->output, '\n');
config_item_write_object_innards (self, value);
self->indent--;
str_append (self->output, indent);
}
str_append_c (self->output, '}');
}
static void
config_item_write_value (struct config_writer *self, struct config_item *value)
{
switch (value->type)
{
case CONFIG_ITEM_NULL:
str_append (self->output, "null");
break;
case CONFIG_ITEM_BOOLEAN:
str_append (self->output, value->value.boolean ? "on" : "off");
break;
case CONFIG_ITEM_INTEGER:
str_append_printf (self->output, "%" PRIi64, value->value.integer);
break;
case CONFIG_ITEM_STRING:
case CONFIG_ITEM_STRING_ARRAY:
config_item_write_string (self->output, &value->value.string);
break;
case CONFIG_ITEM_OBJECT:
config_item_write_object (self, value);
break;
default:
hard_assert (!"invalid item type");
}
}
// FIXME: shuffle code so that this isn't needed (serializer after the parser)
static bool config_tokenizer_is_word_char (int c);
static void
config_item_write_kv_pair (struct config_writer *self,
const char *key, struct config_item *value)
{
char indent[self->indent + 1];
memset (indent, '\t', self->indent);
indent[self->indent] = 0;
if (value->schema && value->schema->comment)
str_append_printf (self->output,
"%s# %s\n", indent, value->schema->comment);
bool can_use_word = true;
for (const char *p = key; *p; p++)
if (!config_tokenizer_is_word_char (*p))
can_use_word = false;
str_append (self->output, indent);
if (can_use_word)
str_append (self->output, key);
else
{
struct str s = { .str = (char *) key, .len = strlen (key) };
config_item_write_string (self->output, &s);
}
str_append (self->output, " = ");
config_item_write_value (self, value);
str_append_c (self->output, '\n');
}
static void
config_item_write_object_innards
(struct config_writer *self, struct config_item *object)
{
hard_assert (object->type == CONFIG_ITEM_OBJECT);
struct str_map_iter iter = str_map_iter_make (&object->value.object);
struct config_item *value;
while ((value = str_map_iter_next (&iter)))
config_item_write_kv_pair (self, iter.link->key, value);
}
static void
config_item_write (struct config_item *value,
bool object_innards, struct str *output)
{
struct config_writer writer = { .output = output, .indent = 0 };
if (object_innards)
config_item_write_object_innards (&writer, value);
else
config_item_write_value (&writer, value);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
enum config_token
{
CONFIG_T_ABORT, ///< EOF or error
CONFIG_T_WORD, ///< [a-zA-Z0-9_]+
CONFIG_T_EQUALS, ///< Equal sign
CONFIG_T_LBRACE, ///< Left curly bracket
CONFIG_T_RBRACE, ///< Right curly bracket
CONFIG_T_NEWLINE, ///< New line
CONFIG_T_NULL, ///< CONFIG_ITEM_NULL
CONFIG_T_BOOLEAN, ///< CONFIG_ITEM_BOOLEAN
CONFIG_T_INTEGER, ///< CONFIG_ITEM_INTEGER
CONFIG_T_STRING ///< CONFIG_ITEM_STRING{,_LIST}
};
static const char *
config_token_name (enum config_token token)
{
switch (token)
{
case CONFIG_T_ABORT: return "end of input";
case CONFIG_T_WORD: return "word";
case CONFIG_T_EQUALS: return "equal sign";
case CONFIG_T_LBRACE: return "left brace";
case CONFIG_T_RBRACE: return "right brace";
case CONFIG_T_NEWLINE: return "newline";
case CONFIG_T_NULL: return "null value";
case CONFIG_T_BOOLEAN: return "boolean";
case CONFIG_T_INTEGER: return "integer";
case CONFIG_T_STRING: return "string";
default:
hard_assert (!"invalid token value");
return NULL;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct config_tokenizer
{
const char *p; ///< Current position in input
size_t len; ///< How many bytes of input are left
bool report_line; ///< Whether to count lines at all
unsigned line; ///< Current line
unsigned column; ///< Current column
int64_t integer; ///< Parsed boolean or integer value
struct str string; ///< Parsed string value
};
/// Input has to be null-terminated anyway
static struct config_tokenizer
config_tokenizer_make (const char *p, size_t len)
{
return (struct config_tokenizer)
{ .p = p, .len = len, .report_line = true, .string = str_make () };
}
static void
config_tokenizer_free (struct config_tokenizer *self)
{
str_free (&self->string);
}
static bool
config_tokenizer_is_word_char (int c)
{
return isalnum_ascii (c) || c == '_';
}
static int
config_tokenizer_advance (struct config_tokenizer *self)
{
int c = *self->p++;
if (c == '\n' && self->report_line)
{
self->column = 0;
self->line++;
}
else
self->column++;
self->len--;
return c;
}
static void config_tokenizer_error (struct config_tokenizer *self,
struct error **e, const char *format, ...) ATTRIBUTE_PRINTF (3, 4);
static void
config_tokenizer_error (struct config_tokenizer *self,
struct error **e, const char *format, ...)
{
struct str description = str_make ();
va_list ap;
va_start (ap, format);
str_append_vprintf (&description, format, ap);
va_end (ap);
if (self->report_line)
error_set (e, "near line %u, column %u: %s",
self->line + 1, self->column + 1, description.str);
else if (self->len)
error_set (e, "near character %u: %s",
self->column + 1, description.str);
else
error_set (e, "near end: %s", description.str);
str_free (&description);
}
static bool
config_tokenizer_hexa_escape (struct config_tokenizer *self, struct str *output)
{
int i;
unsigned char code = 0;
for (i = 0; self->len && i < 2; i++)
{
unsigned char c = tolower_ascii (*self->p);
if (c >= '0' && c <= '9')
code = (code << 4) | (c - '0');
else if (c >= 'a' && c <= 'f')
code = (code << 4) | (c - 'a' + 10);
else
break;
config_tokenizer_advance (self);
}
if (!i)
return false;
str_append_c (output, code);
return true;
}
static bool
config_tokenizer_octal_escape
(struct config_tokenizer *self, struct str *output)
{
int i;
unsigned char code = 0;
for (i = 0; self->len && i < 3; i++)
{
unsigned char c = *self->p;
if (c >= '0' && c <= '7')
code = (code << 3) | (c - '0');
else
break;
config_tokenizer_advance (self);
}
if (!i)
return false;
str_append_c (output, code);
return true;
}
static bool
config_tokenizer_escape_sequence
(struct config_tokenizer *self, struct str *output, struct error **e)
{
if (!self->len)
{
config_tokenizer_error (self, e, "premature end of escape sequence");
return false;
}
unsigned char c;
switch ((c = *self->p))
{
case '"': break;
case '\\': break;
case 'a': c = '\a'; break;
case 'b': c = '\b'; break;
case 'f': c = '\f'; break;
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 't': c = '\t'; break;
case 'v': c = '\v'; break;
case 'x':
case 'X':
config_tokenizer_advance (self);
if (config_tokenizer_hexa_escape (self, output))
return true;
config_tokenizer_error (self, e, "invalid hexadecimal escape");
return false;
default:
if (config_tokenizer_octal_escape (self, output))
return true;
config_tokenizer_error (self, e, "unknown escape sequence");
return false;
}
str_append_c (output, c);
config_tokenizer_advance (self);
return true;
}
static bool
config_tokenizer_dq_string (struct config_tokenizer *self, struct str *output,
struct error **e)
{
unsigned char c = config_tokenizer_advance (self);
while (self->len)
{
if ((c = config_tokenizer_advance (self)) == '"')
return true;
if (c != '\\')
str_append_c (output, c);
else if (!config_tokenizer_escape_sequence (self, output, e))
return false;
}
config_tokenizer_error (self, e, "premature end of string");
return false;
}
static bool
config_tokenizer_bt_string (struct config_tokenizer *self, struct str *output,
struct error **e)
{
unsigned char c = config_tokenizer_advance (self);
while (self->len)
{
if ((c = config_tokenizer_advance (self)) == '`')
return true;
str_append_c (output, c);
}
config_tokenizer_error (self, e, "premature end of string");
return false;
}
static bool
config_tokenizer_string (struct config_tokenizer *self, struct str *output,
struct error **e)
{
// Go-like strings, with C/AWK-like automatic concatenation
while (self->len)
{
bool ok = true;
if (isspace_ascii (*self->p) && *self->p != '\n')
config_tokenizer_advance (self);
else if (*self->p == '"')
ok = config_tokenizer_dq_string (self, output, e);
else if (*self->p == '`')
ok = config_tokenizer_bt_string (self, output, e);
else
break;
if (!ok)
return false;
}
return true;
}
static enum config_token
config_tokenizer_next (struct config_tokenizer *self, struct error **e)
{
// Skip over any whitespace between tokens
while (self->len && isspace_ascii (*self->p) && *self->p != '\n')
config_tokenizer_advance (self);
if (!self->len)
return CONFIG_T_ABORT;
switch (*self->p)
{
case '\n': config_tokenizer_advance (self); return CONFIG_T_NEWLINE;
case '=': config_tokenizer_advance (self); return CONFIG_T_EQUALS;
case '{': config_tokenizer_advance (self); return CONFIG_T_LBRACE;
case '}': config_tokenizer_advance (self); return CONFIG_T_RBRACE;
case '#':
// Comments go until newline
while (self->len)
if (config_tokenizer_advance (self) == '\n')
return CONFIG_T_NEWLINE;
return CONFIG_T_ABORT;
case '"':
case '`':
str_reset (&self->string);
if (!config_tokenizer_string (self, &self->string, e))
return CONFIG_T_ABORT;
if (!utf8_validate (self->string.str, self->string.len))
{
config_tokenizer_error (self, e, "not a valid UTF-8 string");
return CONFIG_T_ABORT;
}
return CONFIG_T_STRING;
}
// Our input doesn't need to be NUL-terminated but we want to use strtoll()
char buf[48] = "", *end = buf;
size_t buf_len = MIN (sizeof buf - 1, self->len);
errno = 0;
self->integer = strtoll (strncpy (buf, self->p, buf_len), &end, 10);
if (errno == ERANGE)
{
config_tokenizer_error (self, e, "integer out of range");
return CONFIG_T_ABORT;
}
if (end != buf)
{
self->len -= end - buf;
self->p += end - buf;
return CONFIG_T_INTEGER;
}
if (!config_tokenizer_is_word_char (*self->p))
{
config_tokenizer_error (self, e, "invalid input");
return CONFIG_T_ABORT;
}
str_reset (&self->string);
do
str_append_c (&self->string, config_tokenizer_advance (self));
while (self->len && config_tokenizer_is_word_char (*self->p));
if (!strcmp (self->string.str, "null"))
return CONFIG_T_NULL;
bool boolean;
if (!set_boolean_if_valid (&boolean, self->string.str))
return CONFIG_T_WORD;
self->integer = boolean;
return CONFIG_T_BOOLEAN;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
struct config_parser
{
struct config_tokenizer tokenizer; ///< Tokenizer
struct error *error; ///< Tokenizer error
enum config_token token; ///< Current token in the tokenizer
bool replace_token; ///< Replace the token
};
static struct config_parser
config_parser_make (const char *script, size_t len)
{
// As reading in tokens may cause exceptions, we wait for the first peek()
// to replace the initial CONFIG_T_ABORT.
return (struct config_parser)
{
.tokenizer = config_tokenizer_make (script, len),
.replace_token = true,
};
}
static void
config_parser_free (struct config_parser *self)
{
config_tokenizer_free (&self->tokenizer);
if (self->error)
error_free (self->error);
}
static enum config_token
config_parser_peek (struct config_parser *self, jmp_buf out)
{
if (self->replace_token)
{
self->token = config_tokenizer_next (&self->tokenizer, &self->error);
if (self->error)
longjmp (out, 1);
self->replace_token = false;
}
return self->token;
}
static bool
config_parser_accept
(struct config_parser *self, enum config_token token, jmp_buf out)
{
return self->replace_token = (config_parser_peek (self, out) == token);
}
static void
config_parser_expect
(struct config_parser *self, enum config_token token, jmp_buf out)
{
if (config_parser_accept (self, token, out))
return;
config_tokenizer_error (&self->tokenizer, &self->error,
"unexpected `%s', expected `%s'",
config_token_name (self->token),
config_token_name (token));
longjmp (out, 1);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// We don't need no generator, but a few macros will come in handy.
// From time to time C just doesn't have the right features.
#define PEEK() config_parser_peek (self, err)
#define ACCEPT(token) config_parser_accept (self, token, err)
#define EXPECT(token) config_parser_expect (self, token, err)
#define SKIP_NL() do {} while (ACCEPT (CONFIG_T_NEWLINE))
static struct config_item *config_parser_parse_object
(struct config_parser *self, jmp_buf out);
static struct config_item *
config_parser_parse_value (struct config_parser *self, jmp_buf out)
{
struct config_item *volatile result = NULL;
jmp_buf err;
if (setjmp (err))
{
if (result)
config_item_destroy (result);
longjmp (out, 1);
}
if (ACCEPT (CONFIG_T_LBRACE))
{
result = config_parser_parse_object (self, out);
SKIP_NL ();
EXPECT (CONFIG_T_RBRACE);
return result;
}
if (ACCEPT (CONFIG_T_NULL))
return config_item_null ();
if (ACCEPT (CONFIG_T_BOOLEAN))
return config_item_boolean (self->tokenizer.integer);
if (ACCEPT (CONFIG_T_INTEGER))
return config_item_integer (self->tokenizer.integer);
if (ACCEPT (CONFIG_T_STRING))
return config_item_string (&self->tokenizer.string);
config_tokenizer_error (&self->tokenizer, &self->error,
"unexpected `%s', expected a value",
config_token_name (self->token));
longjmp (out, 1);
}
/// Parse a single "key = value" assignment into @a object
static bool
config_parser_parse_kv_pair (struct config_parser *self,
struct config_item *object, jmp_buf out)
{
char *volatile key = NULL;
jmp_buf err;
if (setjmp (err))
{
free (key);
longjmp (out, 1);
}
SKIP_NL ();
// Either this object's closing right brace if called recursively,
// or end of file when called on a whole configuration file
if (PEEK () == CONFIG_T_RBRACE
|| PEEK () == CONFIG_T_ABORT)
return false;
// I'm not sure how to feel about arbitrary keys but here they are
if (!ACCEPT (CONFIG_T_STRING))
EXPECT (CONFIG_T_WORD);
key = xstrdup (self->tokenizer.string.str);
SKIP_NL ();
EXPECT (CONFIG_T_EQUALS);
SKIP_NL ();
str_map_set (&object->value.object, key,
config_parser_parse_value (self, err));
free (key);
key = NULL;
if (PEEK () == CONFIG_T_RBRACE
|| PEEK () == CONFIG_T_ABORT)
return false;
EXPECT (CONFIG_T_NEWLINE);
return true;
}
/// Parse the inside of an object definition
static struct config_item *
config_parser_parse_object (struct config_parser *self, jmp_buf out)
{
struct config_item *volatile object = config_item_object ();
jmp_buf err;
if (setjmp (err))
{
config_item_destroy (object);
longjmp (out, 1);
}
while (config_parser_parse_kv_pair (self, object, err))
;
return object;
}
#undef PEEK
#undef ACCEPT
#undef EXPECT
#undef SKIP_NL
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/// Parse a configuration snippet either as an object or a bare value.
/// If it's the latter (@a single_value_only), no newlines may follow.
static struct config_item *
config_item_parse (const char *script, size_t len,
bool single_value_only, struct error **e)
{
volatile struct config_parser parser = config_parser_make (script, len);
struct config_parser *volatile self = (struct config_parser *) &parser;
struct config_item *volatile object = NULL;
jmp_buf err;
if (setjmp (err))
{
if (object)
{
config_item_destroy (object);
object = NULL;
}
error_propagate (e, parser.error);
parser.error = NULL;
goto end;
}
if (single_value_only)
{
// This is really only intended for in-program configuration
// and telling the line number would look awkward
parser.tokenizer.report_line = false;
object = config_parser_parse_value (self, err);
}
else
object = config_parser_parse_object (self, err);
config_parser_expect (self, CONFIG_T_ABORT, err);
end:
config_parser_free (self);
return object;
}
/// Clone an item. Schema assignments aren't retained.
static struct config_item *
config_item_clone (struct config_item *self)
{
// Oh well, it saves code
struct str tmp = str_make ();
config_item_write (self, false, &tmp);
struct config_item *result =
config_item_parse (tmp.str, tmp.len, true, NULL);
str_free (&tmp);
return result;
}
static struct config_item *
config_read_from_file (const char *filename, struct error **e)
{
struct config_item *root = NULL;
struct str data = str_make ();
if (!read_file (filename, &data, e))
goto end;
struct error *error = NULL;
if (!(root = config_item_parse (data.str, data.len, false, &error)))
{
error_set (e, "parse error in `%s': %s", filename, error->message);
error_free (error);
}
end:
str_free (&data);
return root;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/// "user_data" is passed to allow its immediate use in validation callbacks
static struct config_item *
config_schema_initialize_item (const struct config_schema *schema,
struct config_item *parent, void *user_data, struct error **warning,
struct error **e)
{
hard_assert (parent->type == CONFIG_ITEM_OBJECT);
struct config_item *item =
str_map_find (&parent->value.object, schema->name);
if (item)
{
struct error *error = NULL;
item->user_data = user_data;
if (config_item_validate_by_schema (item, schema, &error))
goto keep_current;
error_set (warning, "resetting configuration item "
"`%s' to default: %s", schema->name, error->message);
error_free (error);
}
struct error *error = NULL;
if (schema->default_)
item = config_item_parse
(schema->default_, strlen (schema->default_), true, &error);
else
item = config_item_null ();
if (item)
item->user_data = user_data;
if (error || !config_item_validate_by_schema (item, schema, &error))
{
error_set (e, "invalid default for configuration item `%s': %s",
schema->name, error->message);
error_free (error);
if (item)
config_item_destroy (item);
return NULL;
}
// This will free the old item if there was any
str_map_set (&parent->value.object, schema->name, item);
keep_current:
// Make sure the string subtype fits the schema
if (config_item_type_is_string (item->type)
&& config_item_type_is_string (schema->type))
item->type = schema->type;
item->schema = schema;
return item;
}
/// Assign schemas and user_data to multiple items at once;
/// feel free to copy over and modify to suit your particular needs
static void
config_schema_apply_to_object (const struct config_schema *schema_array,
struct config_item *object, void *user_data)
{
while (schema_array->name)
{
struct error *warning = NULL, *e = NULL;
config_schema_initialize_item
(schema_array++, object, user_data, &warning, &e);
if (warning)
{
print_warning ("%s", warning->message);
error_free (warning);
}
if (e)
exit_fatal ("%s", e->message);
}
}
static void
config_schema_call_changed (struct config_item *item)
{
if (item->type == CONFIG_ITEM_OBJECT)
{
struct str_map_iter iter = str_map_iter_make (&item->value.object);
struct config_item *child;
while ((child = str_map_iter_next (&iter)))
config_schema_call_changed (child);
}
else if (item->schema && item->schema->on_change)
item->schema->on_change (item);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// XXX: the callbacks may be overdesigned and of little to no practical use
typedef void (*config_module_load_fn)
(struct config_item *subtree, void *user_data);
struct config_module
{
char *name; ///< Name of the subtree
config_module_load_fn loader; ///< Module config subtree loader
void *user_data; ///< User data
};
static void
config_module_destroy (struct config_module *self)
{
free (self->name);
free (self);
}
struct config
{
struct str_map modules; ///< Toplevel modules
struct config_item *root; ///< CONFIG_ITEM_OBJECT
};
static struct config
config_make (void)
{
return (struct config)
{ .modules = str_map_make ((str_map_free_fn) config_module_destroy) };
}
static void
config_free (struct config *self)
{
str_map_free (&self->modules);
if (self->root)
config_item_destroy (self->root);
}
static void
config_register_module (struct config *self,
const char *name, config_module_load_fn loader, void *user_data)
{
struct config_module *module = xcalloc (1, sizeof *module);
module->name = xstrdup (name);
module->loader = loader;
module->user_data = user_data;
str_map_set (&self->modules, name, module);
}
static void
config_load (struct config *self, struct config_item *root)
{
hard_assert (root->type == CONFIG_ITEM_OBJECT);
if (self->root)
config_item_destroy (self->root);
self->root = root;
struct str_map_iter iter = str_map_iter_make (&self->modules);
struct config_module *module;
while ((module = str_map_iter_next (&iter)))
{
struct config_item *subtree = str_map_find
(&root->value.object, module->name);
// Silently fix inputs that only a lunatic user could create
if (!subtree || subtree->type != CONFIG_ITEM_OBJECT)
str_map_set (&root->value.object, module->name,
(subtree = config_item_object ()));
if (module->loader)
module->loader (subtree, module->user_data);
}
}
// --- Protocol modules --------------------------------------------------------
#include "liberty-proto.c"