1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
package main
import (
"fmt"
"github.com/BurntSushi/xgb"
"github.com/BurntSushi/xgb/render"
"github.com/BurntSushi/xgb/xproto"
"github.com/golang/freetype"
"github.com/golang/freetype/truetype"
"golang.org/x/image/font"
"golang.org/x/image/font/gofont/goregular"
"golang.org/x/image/math/fixed"
"image"
"log"
"math/rand"
)
func F64ToFixed(f float64) render.Fixed { return render.Fixed(f * 65536) }
func FixedToF64(f render.Fixed) float64 { return float64(f) / 65536 }
func glyphListBytes(buf []byte, runes []rune, size int) int {
b := 0
for _, r := range runes {
switch size {
default:
buf[b] = byte(r)
b += 1
case 2:
xgb.Put16(buf[b:], uint16(r))
b += 2
case 4:
xgb.Put32(buf[b:], uint32(r))
b += 4
}
}
return xgb.Pad(b)
}
// When the len is 255, a GLYPHABLE follows, otherwise a list of CARD8/16/32.
func glyphEltHeaderBytes(buf []byte, len byte, deltaX, deltaY int16) int {
b := 0
buf[b] = len
b += 4
xgb.Put16(buf[b:], uint16(deltaX))
b += 2
xgb.Put16(buf[b:], uint16(deltaY))
b += 2
return xgb.Pad(b)
}
type xgbCookie interface{ Check() error }
// TODO: We actually need a higher-level function that also keeps track of
// and loads glyphs into the X server.
// compositeString makes an appropriate render.CompositeGlyphs request,
// assuming that glyphs equal Unicode codepoints.
func compositeString(c *xgb.Conn, op byte, src, dst render.Picture,
maskFormat render.Pictformat, glyphset render.Glyphset, srcX, srcY int16,
destX, destY int16, text string) xgbCookie {
runes := []rune(text)
var highest rune
for _, r := range runes {
if r > highest {
highest = r
}
}
size := 1
switch {
case highest > 1<<16:
size = 4
case highest > 1<<8:
size = 2
}
// They gave up on the XCB protocol API and we need to serialize explicitly.
// To spare us from caring about the padding, use the largest number lesser
// than 255 that is divisible by 4 (for size 2 and 4 the requirements are
// less strict but this works in the general case).
const maxPerChunk = 252
buf := make([]byte, (len(runes)+maxPerChunk-1)/maxPerChunk*8+len(runes)*size)
b := 0
for len(runes) > maxPerChunk {
b += glyphEltHeaderBytes(buf[b:], maxPerChunk, 0, 0)
b += glyphListBytes(buf[b:], runes[:maxPerChunk], size)
runes = runes[maxPerChunk:]
}
if len(runes) > 0 {
b += glyphEltHeaderBytes(buf[b:], byte(len(runes)), destX, destY)
b += glyphListBytes(buf[b:], runes, size)
}
switch size {
default:
return render.CompositeGlyphs8(c, op, src, dst, maskFormat, glyphset,
srcX, srcY, buf)
case 2:
return render.CompositeGlyphs16(c, op, src, dst, maskFormat, glyphset,
srcX, srcY, buf)
case 4:
return render.CompositeGlyphs32(c, op, src, dst, maskFormat, glyphset,
srcX, srcY, buf)
}
}
// ---
func main() {
X, err := xgb.NewConn()
if err != nil {
log.Fatalln(err)
}
if err := render.Init(X); err != nil {
log.Fatalln(err)
}
setup := xproto.Setup(X)
screen := setup.DefaultScreen(X)
var visual xproto.Visualid
var depth byte
for _, i := range screen.AllowedDepths {
if i.Depth == 32 {
// TODO: Could/should check other parameters.
for _, v := range i.Visuals {
if v.Class == xproto.VisualClassTrueColor {
visual = v.VisualId
depth = i.Depth
break
}
}
}
}
if visual == 0 {
log.Fatalln("cannot find an RGBA TrueColor visual")
}
mid, err := xproto.NewColormapId(X)
if err != nil {
log.Fatalln(err)
}
_ = xproto.CreateColormap(
X, xproto.ColormapAllocNone, mid, screen.Root, visual)
wid, err := xproto.NewWindowId(X)
if err != nil {
log.Fatalln(err)
}
// Border pixel and colormap are required when depth differs from parent.
_ = xproto.CreateWindow(X, depth, wid, screen.Root,
0, 0, 500, 500, 0, xproto.WindowClassInputOutput,
visual, xproto.CwBorderPixel|xproto.CwColormap,
[]uint32{0, uint32(mid)})
// This could be included in CreateWindow parameters.
_ = xproto.ChangeWindowAttributes(X, wid,
xproto.CwBackPixel|xproto.CwEventMask, []uint32{0x80808080,
xproto.EventMaskStructureNotify | xproto.EventMaskKeyPress |
xproto.EventMaskExposure})
title := []byte("Gradient")
_ = xproto.ChangeProperty(X, xproto.PropModeReplace, wid, xproto.AtomWmName,
xproto.AtomString, 8, uint32(len(title)), title)
_ = xproto.MapWindow(X, wid)
/*
rfilters, err := render.QueryFilters(X, xproto.Drawable(wid)).Reply()
if err != nil {
log.Fatalln(err)
}
filters := []string{}
for _, f := range rfilters.Filters {
filters = append(filters, f.Name)
}
log.Printf("filters: %v\n", filters)
*/
pformats, err := render.QueryPictFormats(X).Reply()
if err != nil {
log.Fatalln(err)
}
/*
for _, pf := range pformats.Formats {
log.Printf("format %2d: depth %2d, RGBA %3x %3x %3x %3x\n",
pf.Id, pf.Depth,
pf.Direct.RedMask, pf.Direct.GreenMask, pf.Direct.BlueMask,
pf.Direct.AlphaMask)
}
*/
// Similar to XRenderFindVisualFormat.
// The DefaultScreen is almost certain to be zero.
var pformat render.Pictformat
for _, pd := range pformats.Screens[X.DefaultScreen].Depths {
// This check seems to be slightly extraneous.
if pd.Depth != depth {
continue
}
for _, pv := range pd.Visuals {
if pv.Visual == visual {
pformat = pv.Format
}
}
}
// ...or just scan through pformats.Formats and look for matches, which is
// what XRenderFindStandardFormat in Xlib does as well as exp/shiny.
f, err := freetype.ParseFont(goregular.TTF)
if err != nil {
log.Fatalln(err)
}
c := freetype.NewContext()
c.SetDPI(96) // TODO: Take this from the screen or monitor.
c.SetFont(f)
c.SetFontSize(9)
c.SetSrc(image.White)
c.SetHinting(font.HintingFull)
// TODO: Seems like we want to use NRGBA. Or RGBA if the A is always 1.
// Or implement our own image.Image for direct gamma-corrected RGB!
nrgb := image.NewRGBA(image.Rect(0, 0, 36, 36))
c.SetClip(nrgb.Bounds())
c.SetDst(nrgb)
bounds := f.Bounds(c.PointToFixed(9 /* FIXME: Duplication. */))
log.Println("+%v", bounds)
// FIXME: Duplication.
opts := truetype.Options{
Size: 9,
DPI: 96,
}
// TODO: Seems this satisfies the sfnt interface, DrawString just adds
// kerning and DrawMask on top.
face := truetype.NewFace(f, &opts)
_ = face
// TODO: Figure out a way to load glyphs into XRender.
var rgbFormat render.Pictformat
for _, pf := range pformats.Formats {
// Hopefully. Might want to check ARGB/BGRA.
if pf.Depth == 32 && pf.Direct.AlphaMask != 0 {
rgbFormat = pf.Id
log.Printf("%+v\n", pf)
break
}
}
gsid, err := render.NewGlyphsetId(X)
if err != nil {
log.Fatalln(err)
}
// NOTE: A depth of 24 will not work, the server always rejects it.
_ = render.CreateGlyphSet(X, gsid, rgbFormat)
for r := rune(32); r < 128; r++ {
for i := 0; i < len(nrgb.Pix); i++ {
nrgb.Pix[i] = 0
}
advance, err := c.DrawString(string(r), fixed.P(18, 18))
_, _ = advance, err
if err != nil {
log.Println("skip")
continue
}
_ = render.AddGlyphs(X, gsid, 1, []uint32{uint32(r)},
[]render.Glyphinfo{{
Width: uint16(36),
Height: uint16(36),
X: int16(18),
Y: int16(18),
XOff: int16(18),
YOff: 0,
}}, []byte(nrgb.Pix))
}
pid, err := render.NewPictureId(X)
if err != nil {
log.Fatalln(err)
}
// Dithering is not supported. :(
render.CreatePicture(X, pid, xproto.Drawable(wid), pformat, 0, []uint32{})
// Reserve an ID for the gradient.
gid, err := render.NewPictureId(X)
if err != nil {
log.Fatalln(err)
}
whiteid, err := render.NewPictureId(X)
if err != nil {
log.Fatalln(err)
}
_ = render.CreateSolidFill(X, whiteid, render.Color{
Red: 0xffff,
Green: 0xffff,
Blue: 0xffff,
Alpha: 0xffff,
})
var from, to render.Color
var start, end uint32
recolor := func() {
start = rand.Uint32() & 0xffffff
from = render.Color{
Red: 0x101 * uint16((start>>16)&0xff),
Green: 0x101 * uint16((start>>8)&0xff),
Blue: 0x101 * uint16(start&0xff),
Alpha: 0xffff,
}
end = rand.Uint32() & 0xffffff
to = render.Color{
Red: 0x101 * uint16((end>>16)&0xff),
Green: 0x101 * uint16((end>>8)&0xff),
Blue: 0x101 * uint16(end&0xff),
Alpha: 0xffff,
}
}
var w, h uint16
gradient := func() {
if w < 100 || h < 100 {
return
}
// We could also use a transformation matrix for changes in size.
_ = render.CreateLinearGradient(X, gid,
render.Pointfix{F64ToFixed(0), F64ToFixed(0)},
render.Pointfix{F64ToFixed(0), F64ToFixed(float64(h) - 100)},
2, []render.Fixed{F64ToFixed(0), F64ToFixed(1)},
[]render.Color{from, to})
_ = render.Composite(X, render.PictOpSrc, gid, render.PictureNone, pid,
0, 0, 0, 0, 50, 50, w-100, h-100)
_ = render.FreePicture(X, gid)
_ = compositeString(X, render.PictOpOver, whiteid, pid,
0 /* TODO: mask Pictureformat? */, gsid, 0, 0, 100, 100,
fmt.Sprintf("%#06x - %#06x", start, end))
}
for {
ev, xerr := X.WaitForEvent()
if xerr != nil {
log.Printf("Error: %s\n", xerr)
return
}
if ev == nil {
return
}
log.Printf("Event: %s\n", ev)
switch e := ev.(type) {
case xproto.UnmapNotifyEvent:
return
case xproto.ConfigureNotifyEvent:
w, h = e.Width, e.Height
recolor()
case xproto.KeyPressEvent:
recolor()
gradient()
case xproto.ExposeEvent:
gradient()
}
}
}
|