aboutsummaryrefslogtreecommitdiff
path: root/nexgb/xgbgen/expression.go
blob: 2047b5f66c661d59fcd15cb6623cccb987294227 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
package main

import (
	"fmt"
	"log"
)

// Expression represents all the different forms of expressions possible in
// side an XML protocol description file. It's also received a few custom
// addendums to make applying special functions (like padding) easier.
type Expression interface {
	// Concrete determines whether this particular expression can be computed
	// to some constant value inside xgbgen. (The alternative is that the
	// expression can only be computed with values at run time of the
	// generated code.)
	Concrete() bool

	// Eval evaluates a concrete expression. It is an error to call Eval
	// on any expression that is not concrete (or contains any sub-expression
	// that is not concrete).
	Eval() int

	// Reduce attempts to evaluate any concrete sub-expressions.
	// i.e., (1 + 2 * (5 + 1 + someSizeOfStruct) reduces to
	// (3 * (6 + someSizeOfStruct)).
	// 'prefix' is used preprended to any field reference name.
	Reduce(prefix string) string

	// String is an alias for Reduce("")
	String() string

	// Initialize makes sure all names in this expression and any subexpressions
	// have been translated to Go source names.
	Initialize(p *Protocol)
}

// Function is a custom expression not found in the XML. It's simply used
// to apply a function named in 'Name' to the Expr expression.
type Function struct {
	Name string
	Expr Expression
}

func (e *Function) Concrete() bool {
	return false
}

func (e *Function) Eval() int {
	log.Fatalf("Cannot evaluate a 'Function'. It is not concrete.")
	panic("unreachable")
}

func (e *Function) Reduce(prefix string) string {
	return fmt.Sprintf("%s(%s)", e.Name, e.Expr.Reduce(prefix))
}

func (e *Function) String() string {
	return e.Reduce("")
}

func (e *Function) Initialize(p *Protocol) {
	e.Expr.Initialize(p)
}

// BinaryOp is an expression that performs some operation (defined in the XML
// file) with Expr1 and Expr2 as operands.
type BinaryOp struct {
	Op    string
	Expr1 Expression
	Expr2 Expression
}

// newBinaryOp constructs a new binary expression when both expr1 and expr2
// are not nil. If one or both are nil, then the non-nil expression is
// returned unchanged or nil is returned.
func newBinaryOp(op string, expr1, expr2 Expression) Expression {
	switch {
	case expr1 != nil && expr2 != nil:
		return &BinaryOp{
			Op:    op,
			Expr1: expr1,
			Expr2: expr2,
		}
	case expr1 != nil && expr2 == nil:
		return expr1
	case expr1 == nil && expr2 != nil:
		return expr2
	case expr1 == nil && expr2 == nil:
		return nil
	}
	panic("unreachable")
}

func (e *BinaryOp) Concrete() bool {
	return e.Expr1.Concrete() && e.Expr2.Concrete()
}

func (e *BinaryOp) Eval() int {
	switch e.Op {
	case "+":
		return e.Expr1.Eval() + e.Expr2.Eval()
	case "-":
		return e.Expr1.Eval() - e.Expr2.Eval()
	case "*":
		return e.Expr1.Eval() * e.Expr2.Eval()
	case "/":
		return e.Expr1.Eval() / e.Expr2.Eval()
	case "&":
		return e.Expr1.Eval() & e.Expr2.Eval()
	case "<<":
		return int(uint(e.Expr1.Eval()) << uint(e.Expr2.Eval()))
	}

	log.Fatalf("Invalid binary operator '%s' for expression.", e.Op)
	panic("unreachable")
}

func (e *BinaryOp) Reduce(prefix string) string {
	if e.Concrete() {
		return fmt.Sprintf("%d", e.Eval())
	}

	// An incredibly dirty hack to make sure any time we perform an operation
	// on a field, we're dealing with ints...
	expr1, expr2 := e.Expr1, e.Expr2
	switch expr1.(type) {
	case *FieldRef:
		expr1 = &Function{
			Name: "int",
			Expr: expr1,
		}
	}
	switch expr2.(type) {
	case *FieldRef:
		expr2 = &Function{
			Name: "int",
			Expr: expr2,
		}
	}
	return fmt.Sprintf("(%s %s %s)",
		expr1.Reduce(prefix), e.Op, expr2.Reduce(prefix))
}

func (e *BinaryOp) String() string {
	return e.Reduce("")
}

func (e *BinaryOp) Initialize(p *Protocol) {
	e.Expr1.Initialize(p)
	e.Expr2.Initialize(p)
}

// UnaryOp is the same as BinaryOp, except it's a unary operator with only
// one sub-expression.
type UnaryOp struct {
	Op   string
	Expr Expression
}

func (e *UnaryOp) Concrete() bool {
	return e.Expr.Concrete()
}

func (e *UnaryOp) Eval() int {
	switch e.Op {
	case "~":
		return ^e.Expr.Eval()
	}

	log.Fatalf("Invalid unary operator '%s' for expression.", e.Op)
	panic("unreachable")
}

func (e *UnaryOp) Reduce(prefix string) string {
	if e.Concrete() {
		return fmt.Sprintf("%d", e.Eval())
	}
	return fmt.Sprintf("(%s (%s))", e.Op, e.Expr.Reduce(prefix))
}

func (e *UnaryOp) String() string {
	return e.Reduce("")
}

func (e *UnaryOp) Initialize(p *Protocol) {
	e.Expr.Initialize(p)
}

// Padding represents the application of the 'pad' function to some
// sub-expression.
type Padding struct {
	Expr Expression
}

func (e *Padding) Concrete() bool {
	return e.Expr.Concrete()
}

func (e *Padding) Eval() int {
	return pad(e.Expr.Eval())
}

func (e *Padding) Reduce(prefix string) string {
	if e.Concrete() {
		return fmt.Sprintf("%d", e.Eval())
	}
	return fmt.Sprintf("xgb.Pad(%s)", e.Expr.Reduce(prefix))
}

func (e *Padding) String() string {
	return e.Reduce("")
}

func (e *Padding) Initialize(p *Protocol) {
	e.Expr.Initialize(p)
}

// PopCount represents the application of the 'PopCount' function to
// some sub-expression.
type PopCount struct {
	Expr Expression
}

func (e *PopCount) Concrete() bool {
	return e.Expr.Concrete()
}

func (e *PopCount) Eval() int {
	return int(popCount(uint(e.Expr.Eval())))
}

func (e *PopCount) Reduce(prefix string) string {
	if e.Concrete() {
		return fmt.Sprintf("%d", e.Eval())
	}
	return fmt.Sprintf("xgb.PopCount(%s)", e.Expr.Reduce(prefix))
}

func (e *PopCount) String() string {
	return e.Reduce("")
}

func (e *PopCount) Initialize(p *Protocol) {
	e.Expr.Initialize(p)
}

// Value represents some constant integer.
type Value struct {
	v int
}

func (e *Value) Concrete() bool {
	return true
}

func (e *Value) Eval() int {
	return e.v
}

func (e *Value) Reduce(prefix string) string {
	return fmt.Sprintf("%d", e.v)
}

func (e *Value) String() string {
	return e.Reduce("")
}

func (e *Value) Initialize(p *Protocol) {}

// Bit represents some bit whose value is computed by '1 << bit'.
type Bit struct {
	b int
}

func (e *Bit) Concrete() bool {
	return true
}

func (e *Bit) Eval() int {
	return int(1 << uint(e.b))
}

func (e *Bit) Reduce(prefix string) string {
	return fmt.Sprintf("%d", e.Eval())
}

func (e *Bit) String() string {
	return e.Reduce("")
}

func (e *Bit) Initialize(p *Protocol) {}

// FieldRef represents a reference to some variable in the generated code
// with name Name.
type FieldRef struct {
	Name string
}

func (e *FieldRef) Concrete() bool {
	return false
}

func (e *FieldRef) Eval() int {
	log.Fatalf("Cannot evaluate a 'FieldRef'. It is not concrete.")
	panic("unreachable")
}

func (e *FieldRef) Reduce(prefix string) string {
	val := e.Name
	if len(prefix) > 0 {
		val = fmt.Sprintf("%s%s", prefix, val)
	}
	return val
}

func (e *FieldRef) String() string {
	return e.Reduce("")
}

func (e *FieldRef) Initialize(p *Protocol) {
	e.Name = SrcName(p, e.Name)
}

// EnumRef represents a reference to some enumeration field.
// EnumKind is the "group" an EnumItem is the name of the specific enumeration 
// value inside that group.
type EnumRef struct {
	EnumKind Type
	EnumItem string
}

func (e *EnumRef) Concrete() bool {
	return false
}

func (e *EnumRef) Eval() int {
	log.Fatalf("Cannot evaluate an 'EnumRef'. It is not concrete.")
	panic("unreachable")
}

func (e *EnumRef) Reduce(prefix string) string {
	return fmt.Sprintf("%s%s", e.EnumKind, e.EnumItem)
}

func (e *EnumRef) String() string {
	return e.Reduce("")
}

func (e *EnumRef) Initialize(p *Protocol) {
	e.EnumKind = e.EnumKind.(*Translation).RealType(p)
	e.EnumItem = SrcName(p, e.EnumItem)
}

// SumOf represents a summation of the variable in the generated code named by
// Name. It is not currently used. (It's XKB voodoo.)
type SumOf struct {
	Name string
}

func (e *SumOf) Concrete() bool {
	return false
}

func (e *SumOf) Eval() int {
	log.Fatalf("Cannot evaluate a 'SumOf'. It is not concrete.")
	panic("unreachable")
}

func (e *SumOf) Reduce(prefix string) string {
	if len(prefix) > 0 {
		return fmt.Sprintf("sum(%s%s)", prefix, e.Name)
	}
	return fmt.Sprintf("sum(%s)", e.Name)
}

func (e *SumOf) String() string {
	return e.Reduce("")
}

func (e *SumOf) Initialize(p *Protocol) {
	e.Name = SrcName(p, e.Name)
}