#!/bin/sh -e # Requirements: Python ~ 3.11, curl, unzip, git-lfs, awk # # This script downloads a bunch of models into the models/ directory, # after any necessary transformations to run them using the deeptagger binary. # # Once it succeeds, feel free to remove everything but *.{model,tags,onnx} git lfs install mkdir -p models cd models # Create a virtual environment for model conversion. # # If any of the Python stuff fails, # retry from within a Conda environment with a different version of Python. export VIRTUAL_ENV=$(pwd)/venv export TF_ENABLE_ONEDNN_OPTS=0 if ! [ -f "$VIRTUAL_ENV/ready" ] then python3 -m venv "$VIRTUAL_ENV" #"$VIRTUAL_ENV/bin/pip3" install tensorflow[and-cuda] "$VIRTUAL_ENV/bin/pip3" install tf2onnx 'deepdanbooru[tensorflow]' touch "$VIRTUAL_ENV/ready" fi status() { echo "$(tput bold)-- $*$(tput sgr0)" } # Using the deepdanbooru package makes it possible to use other models # trained with the project. deepdanbooru() { local name=$1 url=$2 status "$name" local basename=$(basename "$url") if ! [ -e "$basename" ] then curl -LO "$url" fi local modelname=${basename%%.*} if ! [ -d "$modelname" ] then unzip -d "$modelname" "$basename" fi if ! [ -e "$modelname.tags" ] then ln "$modelname/tags.txt" "$modelname.tags" fi if ! [ -d "$modelname.saved" ] then "$VIRTUAL_ENV/bin/python3" - "$modelname" "$modelname.saved" <<-'END' import sys import deepdanbooru.project as ddp model = ddp.load_model_from_project( project_path=sys.argv[1], compile_model=False) model.export(sys.argv[2]) END fi if ! [ -e "$modelname.onnx" ] then "$VIRTUAL_ENV/bin/python3" -m tf2onnx.convert \ --saved-model "$modelname.saved" --output "$modelname.onnx" fi cat > "$modelname.model" <<-END name=$name shape=nhwc channels=rgb normalize=true pad=edge END } # ONNX preconversions don't have a symbolic first dimension, thus doing our own. wd14() { local name=$1 repository=$2 status "$name" local modelname=$(basename "$repository") if ! [ -d "$modelname" ] then git clone "https://huggingface.co/$repository" fi # Though link the original export as well. if ! [ -e "$modelname.onnx" ] then ln "$modelname/model.onnx" "$modelname.onnx" fi if ! [ -e "$modelname.tags" ] then awk -F, 'NR > 1 { print $2 }' "$modelname/selected_tags.csv" \ > "$modelname.tags" fi cat > "$modelname.model" <<-END name=$name shape=nhwc channels=bgr normalize=false pad=white END if ! [ -e "batch-$modelname.onnx" ] then "$VIRTUAL_ENV/bin/python3" -m tf2onnx.convert \ --saved-model "$modelname" --output "batch-$modelname.onnx" fi if ! [ -e "batch-$modelname.tags" ] then ln "$modelname.tags" "batch-$modelname.tags" fi if ! [ -e "batch-$modelname.model" ] then ln "$modelname.model" "batch-$modelname.model" fi } # These models are an undocumented mess, thus using ONNX preconversions. mldanbooru() { local name=$1 size=$2 basename=$3 status "$name" if ! [ -d ml-danbooru-onnx ] then git clone https://huggingface.co/deepghs/ml-danbooru-onnx fi local modelname=${basename%%.*} if ! [ -e "$basename" ] then ln "ml-danbooru-onnx/$basename" fi if ! [ -e "$modelname.tags" ] then awk -F, 'NR > 1 { print $1 }' ml-danbooru-onnx/tags.csv \ > "$modelname.tags" fi cat > "$modelname.model" <<-END name=$name shape=nchw channels=rgb normalize=true pad=stretch size=$size interpret=sigmoid END } status "Downloading models, beware that git-lfs doesn't indicate progress" deepdanbooru DeepDanbooru \ 'https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip' #wd14 'WD v1.4 ViT v1' 'SmilingWolf/wd-v1-4-vit-tagger' wd14 'WD v1.4 ViT v2' 'SmilingWolf/wd-v1-4-vit-tagger-v2' #wd14 'WD v1.4 ConvNeXT v1' 'SmilingWolf/wd-v1-4-convnext-tagger' wd14 'WD v1.4 ConvNeXT v2' 'SmilingWolf/wd-v1-4-convnext-tagger-v2' wd14 'WD v1.4 ConvNeXTV2 v2' 'SmilingWolf/wd-v1-4-convnextv2-tagger-v2' wd14 'WD v1.4 SwinV2 v2' 'SmilingWolf/wd-v1-4-swinv2-tagger-v2' wd14 'WD v1.4 MOAT v2' 'SmilingWolf/wd-v1-4-moat-tagger-v2' # As suggested by author https://github.com/IrisRainbowNeko/ML-Danbooru-webui mldanbooru 'ML-Danbooru Caformer dec-5-97527' \ 448 'ml_caformer_m36_dec-5-97527.onnx' mldanbooru 'ML-Danbooru TResNet-D 6-30000' \ 640 'TResnet-D-FLq_ema_6-30000.onnx'