// // info.h: metadata extraction utilities // // Copyright (c) 2021, Přemysl Eric Janouch // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // #include #include #include #include // --- Utilities --------------------------------------------------------------- static char * binhex(const uint8_t *data, size_t len) { static const char *alphabet = "0123456789abcdef"; char *buf = calloc(1, len * 2 + 1), *p = buf; for (size_t i = 0; i < len; i++) { *p++ = alphabet[data[i] >> 4]; *p++ = alphabet[data[i] & 0xF]; } return buf; } static uint64_t u64be(const uint8_t *p) { return (uint64_t) p[0] << 56 | (uint64_t) p[1] << 48 | (uint64_t) p[2] << 40 | (uint64_t) p[3] << 32 | (uint64_t) p[4] << 24 | p[5] << 16 | p[6] << 8 | p[7]; } static uint32_t u32be(const uint8_t *p) { return (uint32_t) p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3]; } static uint16_t u16be(const uint8_t *p) { return (uint16_t) p[0] << 8 | p[1]; } static uint64_t u64le(const uint8_t *p) { return (uint64_t) p[7] << 56 | (uint64_t) p[6] << 48 | (uint64_t) p[5] << 40 | (uint64_t) p[4] << 32 | (uint64_t) p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; } static uint32_t u32le(const uint8_t *p) { return (uint32_t) p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; } static uint16_t u16le(const uint8_t *p) { return (uint16_t) p[1] << 8 | p[0]; } // --- TIFF -------------------------------------------------------------------- // libtiff is a mess, and the format is not particularly complicated. // Exiv2 is senselessly copylefted, and cannot do much. // libexif is only marginally better. // ExifTool is too user-oriented. static struct un { uint64_t (*u64) (const uint8_t *); uint32_t (*u32) (const uint8_t *); uint16_t (*u16) (const uint8_t *); } unbe = {u64be, u32be, u16be}, unle = {u64le, u32le, u16le}; struct tiffer { struct un *un; const uint8_t *begin, *p, *end; uint16_t remaining_fields; }; static bool tiffer_u32(struct tiffer *self, uint32_t *u) { if (self->p + 4 > self->end) return false; *u = self->un->u32(self->p); self->p += 4; return true; } static bool tiffer_u16(struct tiffer *self, uint16_t *u) { if (self->p + 2 > self->end) return false; *u = self->un->u16(self->p); self->p += 2; return true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - static bool tiffer_init(struct tiffer *self, const uint8_t *tiff, size_t len) { self->un = NULL; self->begin = self->p = tiff; self->end = tiff + len; self->remaining_fields = 0; const uint8_t le[4] = {'I', 'I', 42, 0}, be[4] = {'M', 'M', 0, 42}; if (tiff + 8 > self->end) return false; else if (!memcmp(tiff, le, sizeof le)) self->un = &unle; else if (!memcmp(tiff, be, sizeof be)) self->un = &unbe; else return false; self->p = tiff + 4; // The first IFD needs to be read by caller explicitly, // even though it's required to be present by TIFF 6.0. return true; } /// Read the next IFD in a sequence. static bool tiffer_next_ifd(struct tiffer *self) { // All fields from any previous IFD need to be read first. if (self->remaining_fields) return false; uint32_t ifd_offset = 0; if (!tiffer_u32(self, &ifd_offset)) return false; // There is nothing more to read, this chain has terminated. if (!ifd_offset) return false; // Note that TIFF 6.0 requires there to be at least one entry, // but there is no need for us to check it. self->p = self->begin + ifd_offset; return tiffer_u16(self, &self->remaining_fields); } /// Initialize a derived TIFF reader for a subIFD at the given location. static bool tiffer_subifd(struct tiffer *self, uint32_t offset, struct tiffer *subreader) { *subreader = *self; subreader->p = subreader->begin + offset; return tiffer_u16(subreader, &subreader->remaining_fields); } enum tiffer_type { BYTE = 1, ASCII, SHORT, LONG, RATIONAL, SBYTE, UNDEFINED, SSHORT, SLONG, SRATIONAL, FLOAT, DOUBLE, IFD // This last type from TIFF Technical Note 1 isn't really used much. }; static size_t tiffer_value_size(enum tiffer_type type) { switch (type) { case BYTE: case SBYTE: case ASCII: case UNDEFINED: return 1; case SHORT: case SSHORT: return 2; case LONG: case SLONG: case FLOAT: case IFD: return 4; case RATIONAL: case SRATIONAL: case DOUBLE: return 8; default: return 0; } } /// A lean iterator for values within entries. struct tiffer_entry { uint16_t tag; enum tiffer_type type; // For {S,}BYTE, ASCII, UNDEFINED, use these fields directly. const uint8_t *p; uint32_t remaining_count; }; static bool tiffer_next_value(struct tiffer_entry *entry) { if (!entry->remaining_count) return false; entry->p += tiffer_value_size(entry->type); entry->remaining_count--; return true; } static bool tiffer_integer( const struct tiffer *self, const struct tiffer_entry *entry, int64_t *out) { if (!entry->remaining_count) return false; // Somewhat excessively lenient, intended for display. // TIFF 6.0 only directly suggests that a reader is should accept // any of BYTE/SHORT/LONG for unsigned integers. switch (entry->type) { case BYTE: case ASCII: case UNDEFINED: *out = *entry->p; return true; case SBYTE: *out = (int8_t) *entry->p; return true; case SHORT: *out = self->un->u16(entry->p); return true; case SSHORT: *out = (int16_t) self->un->u16(entry->p); return true; case LONG: case IFD: *out = self->un->u32(entry->p); return true; case SLONG: *out = (int32_t) self->un->u32(entry->p); return true; default: return false; } } static bool tiffer_rational(const struct tiffer *self, const struct tiffer_entry *entry, int64_t *numerator, int64_t *denominator) { if (!entry->remaining_count) return false; // Somewhat excessively lenient, intended for display. switch (entry->type) { case RATIONAL: *numerator = self->un->u32(entry->p); *denominator = self->un->u32(entry->p + 4); return true; case SRATIONAL: *numerator = (int32_t) self->un->u32(entry->p); *denominator = (int32_t) self->un->u32(entry->p + 4); return true; default: if (tiffer_integer(self, entry, numerator)) { *denominator = 1; return true; } return false; } } static bool tiffer_real( const struct tiffer *self, const struct tiffer_entry *entry, double *out) { if (!entry->remaining_count) return false; // Somewhat excessively lenient, intended for display. // Assuming the host architecture uses IEEE 754. switch (entry->type) { int64_t numerator, denominator; case FLOAT: *out = *(float *) entry->p; return true; case DOUBLE: *out = *(double *) entry->p; return true; default: if (tiffer_rational(self, entry, &numerator, &denominator)) { *out = (double) numerator / denominator; return true; } return false; } } static bool tiffer_next_entry(struct tiffer *self, struct tiffer_entry *entry) { if (!self->remaining_fields) return false; uint16_t type = entry->type = 0xFFFF; if (!tiffer_u16(self, &entry->tag) || !tiffer_u16(self, &type) || !tiffer_u32(self, &entry->remaining_count)) return false; // Short values may and will be inlined, rather than pointed to. size_t values_size = tiffer_value_size(type) * entry->remaining_count; uint32_t offset = 0; if (values_size <= sizeof offset) { entry->p = self->p; self->p += sizeof offset; } else if (tiffer_u32(self, &offset)) { entry->p = self->begin + offset; } else { return false; } // All entries are pre-checked not to overflow. if (entry->p + values_size > self->end) return false; // Setting it at the end may provide an indication while debugging. entry->type = type; self->remaining_fields--; return true; } // --- TIFF/Exif tags ---------------------------------------------------------- struct tiff_value { const char *name; uint16_t value; }; struct tiff_entry { const char *name; uint16_t tag; struct tiff_value *values; }; #include "tiff-tables.h" // TODO(p): Consider if these can't be inlined into `tiff_entries`. static struct { uint16_t tag; struct tiff_entry *entries; } tiff_subifds[] = { {330, tiff_entries}, // SubIFDs {34665, exif_entries}, // Exif IFD Pointer {34853, exif_gps_entries}, // GPS Info IFD Pointer {40965, exif_interoperability_entries}, // Interoperability IFD Pointer {} }; // --- Analysis ---------------------------------------------------------------- static jv add_to_subarray(jv o, const char *key, jv value) { // Invalid values are not allocated, and we use up any valid one. // Beware that jv_get() returns jv_null() rather than jv_invalid(). // Also, the header comment is lying, jv_is_valid() doesn't unreference. jv a = jv_object_get(jv_copy(o), jv_string(key)); return jv_set(o, jv_string(key), jv_is_valid(a) ? jv_array_append(a, value) : JV_ARRAY(value)); } static jv add_warning(jv o, const char *message) { return add_to_subarray(o, "warnings", jv_string(message)); } static jv add_error(jv o, const char *message) { return jv_object_set(o, jv_string("error"), jv_string(message)); } // --- Exif -------------------------------------------------------------------- static jv parse_exif_ifd(struct tiffer *T, const struct tiff_entry *info); static jv parse_exif_subifds(struct tiffer *T, const struct tiffer_entry *entry, struct tiff_entry *info) { int64_t offset = 0; struct tiffer subT = {}; if (!tiffer_integer(T, entry, &offset) || offset < 0 || offset > UINT32_MAX || !tiffer_subifd(T, offset, &subT)) return jv_null(); // The chain should correspond to the values in the entry // (TIFF Technical Note 1), we are not going to verify it. // Note that Nikon NEFs do not follow this rule. jv a = jv_array(); do a = jv_array_append(a, parse_exif_ifd(&subT, info)); while (tiffer_next_ifd(&subT)); return a; } static jv parse_exif_ascii(struct tiffer_entry *entry) { // Adobe XMP Specification Part 3: Storage in Files, 2020/1, 2.4.2 // The text may in practice contain any 8-bit encoding, but likely UTF-8. // TODO(p): Validate UTF-8, and assume Latin 1 if unsuccessful. jv a = jv_array(); uint8_t *nul = 0; while ((nul = memchr(entry->p, 0, entry->remaining_count))) { size_t len = nul - entry->p; a = jv_array_append(a, jv_string_sized((const char *) entry->p, len)); entry->remaining_count -= len + 1; entry->p += len + 1; } // Trailing NULs are required, but let's extract everything. if (entry->remaining_count) { a = jv_array_append(a, jv_string_sized((const char *) entry->p, entry->remaining_count)); } return a; } static jv parse_exif_undefined(struct tiffer_entry *entry) { // Sometimes, it can be ASCII, but the safe bet is to hex-encode it. char *buf = binhex(entry->p, entry->remaining_count); jv s = jv_string(buf); free(buf); return s; } static jv parse_exif_value(const struct tiff_value *values, double real) { if (values) { for (; values->name; values++) if (values->value == real) return jv_string(values->name); } return jv_number(real); } static jv parse_exif_extract_sole_array_element(jv a) { return jv_array_length(jv_copy(a)) == 1 ? jv_array_get(a, 0) : a; } static jv parse_exif_entry(jv o, struct tiffer *T, struct tiffer_entry *entry, const struct tiff_entry *info) { if (!info) info = (struct tiff_entry[]) {{}}; for (; info->name; info++) if (info->tag == entry->tag) break; struct tiff_entry *subentries = NULL; for (size_t i = 0; tiff_subifds[i].tag; i++) if (tiff_subifds[i].tag == entry->tag) subentries = tiff_subifds[i].entries; jv v = jv_true(); double real = 0; if (!entry->remaining_count) { v = jv_null(); } else if (entry->type == IFD || subentries) { v = parse_exif_subifds(T, entry, subentries); } else if (entry->type == ASCII) { v = parse_exif_extract_sole_array_element(parse_exif_ascii(entry)); } else if (entry->type == UNDEFINED && !info->values) { // Several Exif entries of UNDEFINED type contain single-byte numbers. v = parse_exif_undefined(entry); } else if (tiffer_real(T, entry, &real)) { v = jv_array(); do v = jv_array_append(v, parse_exif_value(info->values, real)); while (tiffer_next_value(entry) && tiffer_real(T, entry, &real)); v = parse_exif_extract_sole_array_element(v); } if (info->name) return jv_set(o, jv_string(info->name), v); return jv_set(o, jv_string_fmt("%u", entry->tag), v); } static jv parse_exif_ifd(struct tiffer *T, const struct tiff_entry *info) { jv ifd = jv_object(); struct tiffer_entry entry = {}; while (tiffer_next_entry(T, &entry)) ifd = parse_exif_entry(ifd, T, &entry, info); return ifd; } static jv parse_exif(jv o, const uint8_t *p, size_t len) { struct tiffer T = {}; if (!tiffer_init(&T, p, len)) return add_warning(o, "invalid Exif"); while (tiffer_next_ifd(&T)) o = add_to_subarray(o, "Exif", parse_exif_ifd(&T, tiff_entries)); return o; } // --- Photoshop Image Resources ----------------------------------------------- // Adobe XMP Specification Part 3: Storage in Files, 2020/1, 1.1.3 + 3.1.3 // https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/ // Unless otherwise noted, the descriptions are derived from the above document. static struct { uint16_t id; const char *description; } psir_descriptions[] = { {1000, "Number of channels, rows, columns, depth, mode"}, {1001, "Macintosh print manager print info record"}, {1002, "Macintosh page format information"}, {1003, "Indexed color table"}, {1005, "Resolution information"}, {1006, "Names of alpha channels (Pascal strings)"}, {1007, "Display information"}, {1008, "Caption (Pascal string)"}, // XMP Part 3 3.3.3 {1009, "Border information"}, {1010, "Background color"}, {1011, "Print flags"}, {1012, "Grayscale and multichannel halftoning information"}, {1013, "Color halftoning information"}, {1014, "Duotone halftoning information"}, {1015, "Grayscale and multichannel transfer function"}, {1016, "Color transfer functions"}, {1017, "Duotone transfer functions"}, {1018, "Duotone image information"}, {1019, "Effective B/W values for the dot range"}, {1020, "Caption"}, // XMP Part 3 3.3.3 {1021, "EPS options"}, {1022, "Quick Mask information"}, {1023, "(Obsolete)"}, {1024, "Layer state information"}, {1025, "Working path (not saved)"}, {1026, "Layers group information"}, {1027, "(Obsolete)"}, {1028, "IPTC DataSets"}, // XMP Part 3 3.3.3 {1029, "Image mode for raw format files"}, {1030, "JPEG quality"}, {1032, "Grid and guides information"}, {1033, "Thumbnail resource"}, {1034, "Copyright flag"}, {1035, "Copyright information URL"}, // XMP Part 3 3.3.3 {1036, "Thumbnail resource"}, {1037, "Global lighting angle for effects layer"}, {1038, "Color samplers information"}, {1039, "ICC profile"}, {1040, "Watermark"}, {1041, "ICC untagged profile flag"}, {1042, "Effects visible flag"}, {1043, "Spot halftone"}, {1044, "Document-specific IDs seed number"}, {1045, "Unicode alpha names"}, {1046, "Indexed color table count"}, {1047, "Transparent color index"}, {1049, "Global altitude"}, {1050, "Slices"}, {1051, "Workflow URL"}, {1052, "Jump To XPEP"}, {1053, "Alpha identifiers"}, {1054, "URL list"}, {1057, "Version info"}, {1058, "Exif metadata 1"}, {1059, "Exif metadata 3"}, {1060, "XMP metadata"}, {1061, "MD5 digest of IPTC data"}, // XMP Part 3 3.3.3 {1062, "Print scale"}, {1064, "Pixel aspect ratio"}, {1065, "Layer comps"}, {1066, "Alternate duotone colors"}, {1067, "Alternate spot colors"}, {1069, "Layer selection IDs"}, {1070, "HDR toning information"}, {1071, "Print info"}, {1072, "Layer group(s) enabled ID"}, {1073, "Color samplers"}, {1074, "Measurement scale"}, {1075, "Timeline information"}, {1076, "Sheet disclosure"}, {1077, "Display information to support floating point colors"}, {1078, "Onion skins"}, {1080, "Count information"}, {1082, "Print information"}, {1083, "Print style"}, {1084, "Macintosh NSPrintInfo"}, {1085, "Windows DEVMODE"}, {1086, "Autosave file path"}, {1087, "Autosave format"}, {1088, "Path selection state"}, // {2000-2997, "Saved paths"}, {2999, "Name of clipping path"}, {3000, "Origin path information"}, // {4000-4999, "Plug-in resource"}, {7000, "Image Ready variables"}, {7001, "Image Ready data sets"}, {7002, "Image Ready default selected state"}, {7003, "Image Ready 7 rollover expanded state"}, {7004, "Image Ready rollover expanded state"}, {7005, "Image Ready save layer settings"}, {7006, "Image Ready version"}, {8000, "Lightroom workflow"}, {10000, "Print flags"}, {} }; static jv process_psir_thumbnail(jv res, const uint8_t *data, size_t len) { uint32_t format_number = u32be(data + 0); uint32_t compressed_size = u32be(data + 20); // TODO(p): Recurse into the thumbnail if it's a JPEG. jv format = jv_number(format_number); switch (format_number) { break; case 0: format = jv_string("kJpegRGB"); break; case 1: format = jv_string("kRawRGB"); } res = jv_object_merge(res, JV_OBJECT( jv_string("Format"), format, jv_string("Width"), jv_number(u32be(data + 4)), jv_string("Height"), jv_number(u32be(data + 8)), jv_string("Stride"), jv_number(u32be(data + 12)), jv_string("TotalSize"), jv_number(u32be(data + 16)), jv_string("CompressedSize"), jv_number(compressed_size), jv_string("BitsPerPixel"), jv_number(u16be(data + 24)), jv_string("Planes"), jv_number(u16be(data + 26)) )); if (28 + compressed_size <= len) { char *buf = binhex(data + 28, compressed_size); res = jv_set(res, jv_string("Data"), jv_string(buf)); free(buf); } return res; } static const char * process_iptc_dataset(jv *a, const uint8_t **p, size_t len) { const uint8_t *header = *p; if (len < 5) return "unexpected end of IPTC data"; if (*header != 0x1c) return "invalid tag marker"; uint8_t record = header[1]; uint8_t dataset = header[2]; uint16_t byte_count = header[3] << 8 | header[4]; // TODO(p): Although highly unlikely to appear, we could decode it. if (byte_count & 0x8000) return "unsupported extended DataSet"; if (len - 5 < byte_count) return "data overrun"; char *buf = binhex(header + 5, byte_count); *p += 5 + byte_count; *a = jv_array_append(*a, JV_OBJECT( jv_string("DataSet"), jv_string_fmt("%u:%u", record, dataset), jv_string("Data"), jv_string(buf) )); free(buf); return NULL; } static jv process_psir_iptc(jv res, const uint8_t *data, size_t len) { // https://iptc.org/standards/iim/ // https://iptc.org/std/IIM/4.2/specification/IIMV4.2.pdf jv a = jv_array(); const uint8_t *end = data + len; while (data < end) { const char *err = process_iptc_dataset(&a, &data, end - data); if (err) { a = jv_array_append(a, jv_string(err)); break; } } return jv_set(res, jv_string("DataSets"), a); } static jv process_psir(jv o, uint16_t resource_id, const char *name, const uint8_t *data, size_t len) { const char *description = NULL; if (resource_id >= 2000 && resource_id <= 2997) description = "Saved paths"; if (resource_id >= 4000 && resource_id <= 4999) description = "Plug-in resource"; for (size_t i = 0; psir_descriptions[i].id; i++) if (psir_descriptions[i].id == resource_id) description = psir_descriptions[i].description; jv res = JV_OBJECT( jv_string("name"), jv_string(name), jv_string("id"), jv_number(resource_id), jv_string("description"), description ? jv_string(description) : jv_null(), jv_string("size"), jv_number(len) ); // Both are thumbnails, older is BGR, newer is RGB. if ((resource_id == 1033 || resource_id == 1036) && len >= 28) res = process_psir_thumbnail(res, data, len); if (resource_id == 1028) res = process_psir_iptc(res, data, len); return add_to_subarray(o, "PSIR", res); } static jv parse_psir_block(jv o, const uint8_t *p, size_t len, size_t *advance) { *advance = 0; if (len < 8 || memcmp(p, "8BIM", 4)) return add_warning(o, "bad PSIR block header"); uint16_t resource_id = u16be(p + 4); uint8_t name_len = p[6]; const uint8_t *name = &p[7]; // Add one byte for the Pascal-ish string length prefix, // then another one for padding to make the length even. size_t name_len_full = (name_len + 2) & ~1U; size_t resource_len_offset = 6 + name_len_full, header_len = resource_len_offset + 4; if (len < header_len) return add_warning(o, "bad PSIR block header"); uint32_t resource_len = u32be(p + resource_len_offset); size_t resource_len_padded = (resource_len + 1) & ~1U; if (resource_len_padded < resource_len || len < header_len + resource_len_padded) return add_warning(o, "runaway PSIR block"); char *cname = calloc(1, name_len_full); strncpy(cname, (const char *) name, name_len); o = process_psir(o, resource_id, cname, p + header_len, resource_len); free(cname); *advance = header_len + resource_len_padded; return o; } static jv parse_psir(jv o, const uint8_t *p, size_t len) { if (len == 0) return add_warning(o, "empty PSIR data"); size_t advance = 0; while (len && (o = parse_psir_block(o, p, len, &advance), advance)) { p += advance; len -= advance; } return o; } // --- ICC profiles ------------------------------------------------------------ // v2 https://www.color.org/ICC_Minor_Revision_for_Web.pdf // v4 https://www.color.org/specification/ICC1v43_2010-12.pdf static jv parse_icc_mluc(jv o, const uint8_t *tag, uint32_t tag_length) { // v4 10.13 if (tag_length < 16) return add_warning(o, "invalid ICC 'mluc' structure length"); uint32_t count = u32be(tag + 8); if (count == 0) return add_warning(o, "unnamed ICC profile"); // There is no particularly good reason for us to iterate, take the first. const uint8_t *record = tag + 16 /* + i * u32be(tag + 12) */; uint32_t len = u32be(&record[4]); uint32_t off = u32be(&record[8]); if (off + len > tag_length) return add_warning(o, "invalid ICC 'mluc' structure record"); // Blindly assume simple ASCII, ensure NUL-termination. char name[len], *p = name; for (uint32_t i = 0; i < len / 2; i++) *p++ = tag[off + i * 2 + 1]; *p++ = 0; return jv_set(o, jv_string("ICC"), JV_OBJECT(jv_string("name"), jv_string(name), jv_string("version"), jv_number(4))); } static jv parse_icc_desc(jv o, const uint8_t *profile, size_t profile_len, uint32_t tag_offset, uint32_t tag_length) { const uint8_t *tag = profile + tag_offset; if (tag_offset + tag_length > profile_len) return add_warning(o, "unexpected end of ICC profile"); if (tag_length < 4) return add_warning(o, "invalid ICC tag structure length"); // v2 6.5.17 uint32_t sig = u32be(tag); if (sig == 0x6D6C7563 /* mluc */) return parse_icc_mluc(o, profile + tag_offset, tag_length); if (sig != 0x64657363 /* desc */) return add_warning(o, "invalid ICC 'desc' structure signature"); if (tag_length < 12) return add_warning(o, "invalid ICC 'desc' structure length"); uint32_t count = u32be(tag + 8); if (tag_length < 12 + count) return add_warning(o, "invalid ICC 'desc' structure length"); // Double-ensure a trailing NUL byte. char name[count + 1]; memcpy(name, tag + 12, count); name[count] = 0; return jv_set(o, jv_string("ICC"), JV_OBJECT(jv_string("name"), jv_string(name), jv_string("version"), jv_number(2))); } static jv parse_icc(jv o, const uint8_t *profile, size_t profile_len) { // v2 6, v4 7 if (profile_len < 132) return add_warning(o, "ICC profile too short"); if (u32be(profile) != profile_len) return add_warning(o, "ICC profile size mismatch"); // TODO(p): May decode more of the header fields, and validate them. // Need to check both v2 and v4, this is all fairly annoying. uint32_t count = u32be(profile + 128); if (132 + count * 12 > profile_len) return add_warning(o, "unexpected end of ICC profile"); for (uint32_t i = 0; i < count; i++) { const uint8_t *entry = profile + 132 + i * 12; uint32_t sig = u32be(&entry[0]); uint32_t off = u32be(&entry[4]); uint32_t len = u32be(&entry[8]); // v2 6.4.32, v4 9.2.41 if (sig == 0x64657363 /* desc */) return parse_icc_desc(o, profile, profile_len, off, len); } // The description is required, so this should be unreachable. return jv_set(o, jv_string("ICC"), jv_bool(true)); }